Learn More
Dicyanomethylene-4H-pyran (DCM) chromophores are typical donor-π-acceptor (D-π-A) type chromophores with a broad absorption band resulting from an ultra-fast internal charge-transfer (ICT) process. In 1989, Tang et al. firstly introduced a DCM derivative as a highly fluorescent dopant in organic electroluminescent diodes (OLEDs). Integration of ICT(More)
A new sensor for the fluorescent and colorimetric detection of CO(2) is described. The system utilizes fluoride to activate a tetrapropyl benzobisimidazolium salt and operates in the absence of an exogenous base. On the basis of spectroscopic and theoretical analyses, the mode of action of the present system is ascribed to the fluoride-induced formation of(More)
Drought stress can seriously affect tuberization, yield and quality of potato plant. However, the precise molecular mechanisms governing potato stolon's response to drought stress and water supply are not very well understood. In this work, a potato (Solanum tuberosum L.) variant, Ningshu 4, was subjected to severe drought stress treatment (DT) and(More)
The design and development of new pyrene-based fluorescent probes, P-Hcy-1 and P-Hcy-2, which display selective fluorescence enhancements in response to homocysteine (Hcy), are described. The distinctly different fluorescence responses of P-Hcy-1 and P-Hcy-2 to Hcy vs. Cys are explained by theoretical calculations. Finally, the results of cell experiments(More)
H2S produced in small amounts by mammalian cells has been identified in mediating biological signaling functions. However, the in situ trapping of endogenous H2S generation is still handicapped by a lack of straightforward methods with high selectivity and fast response. Here, we encapsulate a semi-cyanine-BODIPY hybrid dye (BODInD-Cl) and its complementary(More)
Near-infrared (NIR) fluorescent dyes have emerged as promising modalities for monitoring the levels of various biologically relevant species in cells and organisms. The use of NIR probes enables deep photon penetration in tissue, minimizes photo-damage to biological samples, and produces low background auto-fluorescence from biomolecules present in living(More)
Recently, fluorescent or colorimetric chemosensors based on polymers have attracted great attention due to several important advantages, such as their simplicity of use, signal amplification, easy fabrication into devices, and combination of different outputs, etc. This tutorial review will cover polymer-based optical chemosensors from 2007 to 2010.
The highly sensitive and selective, cyanine-based Zn(2+) fluorescent sensor CTMPA was designed, prepared and utilized to monitor endogenous zinc ions in live cells and organisms. Upon addition of Zn(2+) to solutions of CTMPA, an observable blue to light red color change occurs that can be monitored by using UV-vis spectroscopy. Concomitantly, a remarkably(More)
In vivo monitoring of the biodistribution and activation of prodrugs is urgently required. Near infrared (NIR) fluorescence-active fluorophores with excellent photostability are preferable for tracking drug release in vivo. Herein, we describe a NIR prodrug DCM-S-CPT and its polyethylene glycol-polylactic acid (PEG-PLA) loaded nanoparticles as a potent(More)