Zhipeng Yu

Learn More
Accumulating evidence suggests a role for inflammation in the development and progression of cancer. Our group recently identified a cytokine gene signature in lung tissue associated with lung cancer prognosis. Therefore, we hypothesized that concentrations of circulating cytokines in serum may be associated with lung cancer survival. Ten serum cytokines,(More)
Cell cycle checkpoints play critical roles in the maintenance of genomic integrity. The inactivation of checkpoint genes by genetic and epigenetic mechanisms is frequent in all cancer types, as a less-efficient cell cycle control can lead to genetic instability and tumorigenesis. In an on-going case-control study consisting of 216 patients with non-small(More)
Environmental exposure to carcinogens and individual susceptibility play significant roles in cancer risk. Suboptimal DNA repair capability, measured by quantifying mutagen-induced chromosome breaks, might explain variable host susceptibility to environmental carcinogens. In an ongoing lung cancer case-control study, we compared individual sensitivity to(More)
Despite the identification of the 43 kDa transactive response DNA-binding protein (TDP-43) as a major pathological signatory protein in a wide range of neurodegenerative diseases, the mechanistic role of TDP-43 in neurodegenerative disorders is still poorly understood. Here, we report that TDP-43 is physically associated with fragile X mental retardation(More)
Light-induced chemical reactions exist in nature, regulating many important cellular and organismal functions, e.g., photosensing in prokaryotes and vision formation in mammals. Here, we report the genetic incorporation of a photoreactive unnatural amino acid, p-(2-tetrazole)phenylalanine (p-Tpa), into myoglobin site-specifically in E. coli by evolving an(More)
Reactive yet stable alkene reporters offer a facile route to studying fast biological processes via the cycloaddition-based bioorthogonal reactions. Here, we report the design and synthesis of a strained spirocyclic alkene, spiro[2.3]hex-1-ene (Sph), for an accelerated photoclick chemistry, and its site-specific introduction into proteins via amber codon(More)
The nonsymmetrical spatial distribution of newly synthesized proteins in animal cells plays a central role in many cellular processes. Here, we report that a simple alkene tag, homoallylglycine (HAG), was co-translationally incorporated into a recombinant protein as well as endogenous, newly synthesized proteins in mammalian cells with high efficiency. In(More)
We just click: Genetic incorporation of a cyclopropene amino acid CpK (see scheme) site-specifically into proteins in E. coli and mammalian cells was achieved using an orthogonal aminoacyl-tRNA synthetase/tRNA(CUA) pair (CpKRS/MbtRNA(CUA)). Cyclopropene exhibited fast reaction kinetics in the photoclick reaction and allowed rapid (ca. 2 min) labeling of(More)
A 405 nm light-activatable terthiophene-based tetrazole was designed that reacts with a fumarate dipolarophile with the second-order rate constant k2 exceeding 10(3) M(-1) s(-1). The utility of this laser-activatable tetrazole in imaging microtubules in a spatiotemporally controlled manner in live cells was demonstrated.
The tetrazole-based photoclick chemistry has provided a powerful tool to image proteins in live cells. To extend photoclick chemistry to living organisms with improved spatiotemporal control, here we report the design of naphthalene-based tetrazoles that can be efficiently activated by two-photon excitation with a 700 nm femtosecond pulsed laser. A(More)