Learn More
This study focused on the cloning, overexpression, and characterization of the gene encoding L-asparaginase (ansZ) from a nonpathogenic strain of Bacillus subtilis B11-06. The recombinant enzyme showed high thermostability and low affinity to L-glutamine. The ansZ gene, encoding a putative L-asparaginase II, was amplified by PCR and expressed in B. subtilis(More)
The 1,3-propanediol (1,3-PD) synthesis operon (dha operon) was mainly composed of four genes: dhaB, dhaT, gdrA, and gdrB, which encoded glycerol dehydratase, 1,3-PD oxidoreductase and reactivating factor for glycerol dehydratase, respectively. In the present study, dha operon was cloned from 1,3-PD producing strain Klebsiella pneumoniae. Heterologous(More)
In the current study, a GRAS (Generally Recognized As Safe) strain of Bacillus amyloliquefaciens producing 2,3-butanediol (2,3-BD) designated as B10-127 was isolated in our lab. The strain B10-127 produced 2,3-BD effectively under the condition of 20% glucose (quality concentration), showed a high-glucose tolerance. The effects of initial glucose(More)
Arginine biosynthesis in Corynebacterium glutamicum proceeds via a pathway that is controlled by arginine through feedback inhibition of NAGK, the enzyme that converts N-acetyl-l-glutamate (NAG) to N-acety-l-glutamy-l-phosphate. In this study, the gene argB encoding NAGK from C. glutamicum ATCC 13032 was site-directed, and the l-arginine-binding sites of(More)
The 1,3-propanediol oxidoreductase isoenzyme encoding gene (yqhD) from E. coli was amplified by PCR. yqhD was inserted in pEtac to yield the recombinant expression vector pEtac-yqhD. Over-expression of yqhD in E. coli JM109 was achieved with pEtac-yqhD. SDS-PAGE analysis showed an over-expressed recombinant product at about 43 kD, consistent with the(More)
Transformation techniques generally require development before genetic and molecular studies of industrial yeast strains can commence. Candida glycerinogenes WL2002-5 has been used for industrial-scale glycerol production but has proven difficult to transform for molecular studies following previously published procedures. In the present study, phleomycin(More)
Steroid medication is used extensively in clinical applications and comprises a large and vital part of the pharmaceutical industry. However, the difficulty of separating 4-androstene-3,17-dione (AD) from 1,4-androstadiene-3,17-dione (ADD) restricts the application of the microbial transformation of phytosterols in the industry. A novel atmospheric and room(More)
A novel expression system of Klebsiella pneumoniae was developed in order to improve 1,3-propanediol (1,3-PD) production using a K. pneumoniae-Escherichia coli shuttle vector pET28a consisting of the kanamycin-resistance gene promoter Pkan. The recombinant plasmid pETPkan-cat carrying the chloramphenicol acetyltransferase gene cat as selectable marker was(More)
Haloarchaea is an important group of polyhydroxyalkanoate (PHA)-accumulating organisms. However, few promising haloarchaeal species for economical and efficient PHA production have been reported. Here, we first discovered that Halogranum amylolyticum TNN58 could efficiently accumulate poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with a high(More)
The enzyme 3-ketosteroid-Δ(1)-dehydrogenase (KSDD), involved in steroid metabolism, catalyzes the transformation of 4-androstene-3,17-dione (AD) to androst-1,4-diene-3,17-dione (ADD) specifically. Its coding gene was obtained from Mycobacterium neoaurum JC-12 and expressed on the plasmid pMA5 in Bacillus subtilis 168. The successfully expressed KSDD was(More)