Zhilin Wang

Learn More
Residues Tyr59, Gly78, Ser79, Met103, Gln107, Ile136 and Glu137 in human arsenic (+3 oxidation state) methyltransferase (hAS3MT) were deduced to form a potential hydrogen bond network around S-adenosylmethionine (SAM) from the sequence alignment between Cyanidioschyzon merolae arsenite S-adenosylmethyltransferase (CmArsM) and hAS3MT. Herein, seven mutants(More)
Arsenic (III) methyltransferase (AS3MT) catalyzes the process of arsenic methylation. Each arsenite (iAs(3+)) binds to three cysteine residues, methylarsenite (MMA(3+)) binds to two, and dimethylarsenite (DMA(3+)) binds to one. However, only two As-binding sites (Cys156 and Cys206) have been confirmed on human AS3MT (hAS3MT). The third As-binding site is(More)
Arsenic (III) methyltransferase (AS3MT) is a cysteine (Cys)-rich enzyme that catalyzes the biomethylation of arsenic. To investigate how these crucial Cys residues promote catalysis, we used matrix-assisted laser desorption ionization-time of flight-mass spectrometry (MALDI-TOF-MS) to analyze Cys residues in recombinant human arsenic (III) methyltransferase(More)
Hypoxia inducible factor 1 (HIF-1) plays a pivotal role in cellular responses to hypoxia. Prolyl hydroxylase 3 (PHD3) degrades HIF-1α under normoxic conditions through the hydroxylation of HIF-1α for proteolysis. Inhibiting PHD3 activity is crucial for up-regulating HIF-1α, thereby acting as a potential target for treating hypoxia-related diseases. In this(More)
Since arsenic trioxide (As3+) has been successfully used in the treatment of acute promyelocytic leukemia (APL), its adverse effects on patients have been problematic and required a solution. Considering the good therapeutic potency and low toxicity of tetraarsenictetrasulfide (As4S4) in the treatment of APL, we investigated the effects of combining As4S4(More)
BACKGROUND This study was to observe the non-heme iron absorption and biological utilization from typical whole Chinese diets in young Chinese healthy urban men, and to observe if the iron absorption and utilization could be affected by the staple food patterns of Southern and Northern China. MATERIALS AND METHODS Twenty-two young urban men aged 18-24(More)
Cell death in the central nervous system causes neurologic diseases, in which reactive oxygen species (ROS) play a critical role by either inducing cellular oxidative stress or by increasing the cell tolerance against insult. Neurologic diseases may potentially be treated by regulating ROS levels in a certain range with small molecules. We studied(More)
The present study was conducted to determine effects of different forms of yeast (Saccharomyces cerevisiae, strain Y200007) on the growth performance, intestinal development, and systemic immunity in early-weaned piglets. A total of 96 piglets (14-d old, initial average body weight of 4.5 kg) were assigned to 4 dietary treatments: (1) basal diet without(More)
  • 1