• Citations Per Year
Learn More
We demonstrate the realization of a coherent random fiber laser (RFL) in the extremely weakly scattering regime, which contains a dispersive solution of polyhedral oligomeric silsesquioxanes nanoparticles (NPs) and laser dye pyrromethene 597 in carbon disulfide that was injected into a hollow optical fiber. Multiple scattering of polyhedral oligomeric(More)
We demonstrate the realization of a polarized random polymer fiber laser (RPFL) in the different disordered gain media doped polymer optical fibers (POFs). Multiple scattering of disordered media in the orientated POF was experimentally verified to account for polarized lasing observed in our RPFL system. This Letter presents a new avenue for fabricating(More)
A particular photonic crystal fiber (PCF) designed with all circle air holes is proposed. Its characteristics are studied by full-vector finite element method (FEM) with anisotropic perfectly matched layer (PML). The simulation results indicated that the proposed PCF can realize high birefringence (up to 10(-2)), high nonlinearity (50W(-1)·km(-1) and(More)
We have demonstrated the realization of a random polymer fiber laser (RPFL) based on laser dye Pyrromethene 597-doped one-dimensional disordered polymer optical fiber (POF). The stabilized coherent laser action for the disordered POF has been obtained by the weak optical multiple scattering of the polyhedral oligomeric silsesquioxanes nanoparticles in the(More)
A series of one-armed cholesterol-linked azobenzene molecules named CholXAzo with different spacers were synthesized, in which Chol6Azo was found to have induced blue phases (BPs) with a concentration of 4.0 wt%. Under irradiation of 385 nm UV light with a density of 15.0 mW cm(-2), photo-responsive behaviour of the 4.0 wt% Chol6Azo doped sample named B3(More)
The large absolute photonic bandgaps of two-dimensional (2D) anisotropic magnetic plasma photonic crystals with hexagonal and square lattices are obtained by introducing tellurium dielectric rods using the modified plane wave expansion method. Equations for calculating the band structures in the irreducible part of the first Brillouin zone are theoretically(More)
Optical cavities and waveguides are critical parts of modern optical devices. Traditionally, optical cavities and waveguides rely on photonic bandgaps, or total internal reflection, to achieve light trapping. It has been reported that a novel light trapping, which exists in triangular and honeycomb lattices, is attributed to the so-called Dirac point. Our(More)
We have demonstrated the realization of on-line temperature-controlled random lasers (RLs) in the polyhedral oligomeric silsesquioxanes (POSS) nanoparticles (NPs) as well as Pyrromethene 597 (PM597) laser dye, Fe3O4/SiO2 NPs as well as PM597, and only PM597 doped polymer optical fibers (POFs), respectively. The RLs can be obtained from the gained POFs(More)
A liquid core optical fiber (LCOF) composed of hollow fiber and a solution of Eu(TTA)(3)Phen (TTA=2-thenoyltrifluoroacetone, Phen=1, 10-phenanthroline) in dimethyl sulfoxide (DMSO) has been fabricated, in which the concentration of Eu(TTA)(3)Phen in DMSO is 0.8 wt.%, the core diameter of the LCOF is 10 μm, and the fiber length is 8.1 cm. By the end pumping(More)
We demonstrate the realization of two different kinds of random polymer optical fiber lasers to control the random lasing wavelength by changing the disorder of polymer optical fibers (POFs). One is a long-range disorder POF based on copolymer refractive-index inhomogeneity, and the other is a short-range disorder POF based on polyhedral oligomeric(More)
  • 1