Zhihui Wang

Learn More
With more and more social network data being released, protecting the sensitive information within social networks from leakage has become an important concern of publishers. Adversaries with some background structural knowledge about a target individual can easily re-identify him from the network, even if the identifiers have been replaced by randomized(More)
We have extended our previously developed 3D multi-scale agent-based brain tumor model to simulate cancer heterogeneity and to analyze its impact across the scales of interest. While our algorithm continues to employ an epidermal growth factor receptor (EGFR) gene-protein interaction network to determine the cells' phenotype, it now adds an implicit(More)
We present a multiscale agent-based non-small cell lung cancer model that consists of a 3D environment with which cancer cells interact while processing phenotypic changes. At the molecular level, transforming growth factor beta (TGFbeta) has been integrated into our previously developed in silico model as a second extrinsic input in addition to epidermal(More)
Sensitivity analysis is an effective tool for systematically identifying specific perturbations in parameters that have significant effects on the behavior of a given biosystem, at the scale investigated. In this work, using a two-dimensional, multiscale non-small cell lung cancer (NSCLC) model, we examine the effects of perturbations in system parameters(More)
The maximum likelihood estimators (MLEs) and the moment estimators of a two-parameter Birnbaum–Saunders (BISA) distribution are studied by various authors when data are either complete or subject to Type-I or Type-II censoring. But there is not much research on parameter estimation for the BISA distribution under random censoring. A simple method of(More)