Learn More
Quantum technology is maturing to the point where quantum devices, such as quantum communication systems, quantum random number generators and quantum simulators may be built with capabilities exceeding classical computers. A quantum annealer, in particular, solves optimization problems by evolving a known initial configuration at non-zero temperature(More)
With more and more social network data being released, protecting the sensitive information within social networks from leakage has become an important concern of publishers. Adversaries with some background structural knowledge about a target individual can easily re-identify him from the network, even if the identifiers have been replaced by randomized(More)
Simulating cancer behavior across multiple biological scales in space and time, i.e., multiscale cancer modeling, is increasingly being recognized as a powerful tool to refine hypotheses, focus experiments, and enable more accurate predictions. A growing number of examples illustrate the value of this approach in providing quantitative insights in the(More)
Troels F. Rønnow, Zhihui Wang, Joshua Job, Sergio Boixo, Sergei V. Isakov, David Wecker, John M. Martinis, Daniel A. Lidar, and Matthias Troyer∗1 Theoretische Physik, ETH Zurich, 8093 Zurich, Switzerland Department of Chemistry and Center for Quantum Information Science & Technology, University of Southern California, Los Angeles, California 90089, USA(More)
HIWI, the human homologue of Piwi family, is present in CD34+ hematopoietic stem cells and germ cells, but not in well-differentiated cell populations, indicating that HIWI may play an impotent role in determining or maintaining stemness of these cells. That HIWI expression has been detected in several type tumours may suggest its association with clinical(More)
The ensemble of online sequential extreme learning machine (EOS-ELM), an average of several online sequential extreme learning machines (OS-ELMs), can learn data one-by-one or chunk-by-chunk with fixed or varying chunk size. EOS-ELM provides higher accuracy with fewer training time, better generalization performance and stability than other popular(More)
CDC25 phosphatases are important regulators of the cell cycle. Their abnormal expression detected in a number of tumors implies that their dysregulation is involved in malignant transformation. However, the role of CDC25s in vulvar cancer is still unknown. To shed light on their roles in the pathogenesis and to clarify their prognostic values, expression of(More)
Lei Wang, Troels F. Rønnow, Sergio Boixo, Sergei V. Isakov, Zhihui Wang, David Wecker, Daniel A. Lidar, John M. Martinis, and Matthias Troyer Theoretische Physik, ETH Zurich, 8093 Zurich, Switzerland Information Sciences Institute and Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089, USA Department of Chemistry(More)
Agent-based modeling (ABM) is an in silico technique that is being used in a variety of research areas such as in social sciences, economics and increasingly in biomedicine as an interdisciplinary tool to study the dynamics of complex systems. Here, we describe its applicability to integrative tumor biology research by introducing a multi-scale tumor(More)
Sensitivity analysis is an effective tool for systematically identifying specific perturbations in parameters that have significant effects on the behavior of a given biosystem, at the scale investigated. In this work, using a two-dimensional, multiscale non-small cell lung cancer (NSCLC) model, we examine the effects of perturbations in system parameters(More)