Learn More
Current fundamental investigations of human biology and the development of therapeutic drugs commonly rely on 2D monolayer cell culture systems. However, 2D cell culture systems do not accurately recapitulate the structure, function or physiology of living tissues, nor the highly complex and dynamic 3D environments in vivo. Microfluidic technology can(More)
Organized arrays of anisotropic nanoparticles show electronic and optical properties that originate from the coupling of shape-dependent properties of the individual nanorods. The organization of nanorods in a controllable and predictable way provides a route to the fabrication of new materials and functional devices. So far, significant progress has been(More)
This paper describes the fabrication and the performance of microfluidic paper-based electrochemical sensing devices (we call the microfluidic paper-based electrochemical devices, microPEDs). The microPEDs comprise paper-based microfluidic channels patterned by photolithography or wax printing, and electrodes screen-printed from conducting inks (e.g.,(More)
We report a predefined self-organization of gold nanorods (NRs) end-terminated with multiple polymer arms ("pom-poms") in higher-order structures. The assembly of polymer-tethered NRs was controlled by changing the structure of the polymer pom-poms. We show that the variation in the molecular weight of the polymer molecules and their relative location with(More)
We report the results of a comparative study of microfluidic emulsification of liquids with different viscosities. Depending on the properties of the fluids and their rates of flow, emulsification occurred in the dripping and jetting regimes. We studied the characteristic features and typical dependence of the size and of the size distribution of droplets(More)
We report a microfluidic approach to generating capsules of biopolymer hydrogels. Droplets of an aqueous solution of a biopolymer were emulsified in an organic phase comprising a cross-linking agent. Polymer gelation was achieved in situ (on a microfluidic chip) by diffusion-controlled ionic cross-linking of the biopolymer, following the transfer of the(More)
Just as nanoparticles display properties that differ from those of bulk samples of the same material, ensembles of nanoparticles can have collective properties that are different to those displayed by individual nanoparticles and bulk samples. Self-assembly has emerged as a powerful technique for controlling the structure and properties of ensembles of(More)
This paper describes three-dimensional microfluidic paper-based analytical devices (3-D microPADs) that can be programmed (postfabrication) by the user to generate multiple patterns of flow through them. These devices are programmed by pressing single-use 'on' buttons, using a stylus or a ballpoint pen. Pressing a button closes a small space (gap) between(More)
Bubbling up: Dissolution of CO(2) bubbles in a suspension of colloidal particles chemically induces the assembly of particles on the surface of shrunken bubbles, and thus yields rapid continuous formation of a colloidal armor. This approach maintains the high colloidal stability of particles in bulk, has increased productivity, and allows the formation of(More)