Learn More
Organized arrays of anisotropic nanoparticles show electronic and optical properties that originate from the coupling of shape-dependent properties of the individual nanorods. The organization of nanorods in a controllable and predictable way provides a route to the fabrication of new materials and functional devices. So far, significant progress has been(More)
Current fundamental investigations of human biology and the development of therapeutic drugs commonly rely on 2D monolayer cell culture systems. However, 2D cell culture systems do not accurately recapitulate the structure, function or physiology of living tissues, nor the highly complex and dynamic 3D environments in vivo. Microfluidic technology can(More)
This paper describes the fabrication and the performance of microfluidic paper-based electrochemical sensing devices (we call the microfluidic paper-based electrochemical devices, microPEDs). The microPEDs comprise paper-based microfluidic channels patterned by photolithography or wax printing, and electrodes screen-printed from conducting inks (e.g.,(More)
We report a predefined self-organization of gold nanorods (NRs) end-terminated with multiple polymer arms ("pom-poms") in higher-order structures. The assembly of polymer-tethered NRs was controlled by changing the structure of the polymer pom-poms. We show that the variation in the molecular weight of the polymer molecules and their relative location with(More)
The stepwise self-assembly of hollow plasmonic vesicles with vesicular membranes containing strings of gold nanoparticles (NPs) is reported. The formation of chain vesicles can be controlled by tuning the density of the polymer ligands on the surface of the gold NPs. The strong absorption of the chain vesicles in the near-infrared (NIR) region leads to a(More)
Just as nanoparticles display properties that differ from those of bulk samples of the same material, ensembles of nanoparticles can have collective properties that are different to those displayed by individual nanoparticles and bulk samples. Self-assembly has emerged as a powerful technique for controlling the structure and properties of ensembles of(More)
We report the results of a comparative study of microfluidic emulsification of liquids with different viscosities. Depending on the properties of the fluids and their rates of flow, emulsification occurred in the dripping and jetting regimes. We studied the characteristic features and typical dependence of the size and of the size distribution of droplets(More)
We report a microfluidic approach to generating capsules of biopolymer hydrogels. Droplets of an aqueous solution of a biopolymer were emulsified in an organic phase comprising a cross-linking agent. Polymer gelation was achieved in situ (on a microfluidic chip) by diffusion-controlled ionic cross-linking of the biopolymer, following the transfer of the(More)
A multifunctional theranostic platform based on photosensitizer-loaded plasmonic vesicular assemblies of gold nanoparticles (GNPs) is developed for effective cancer imaging and treatment. The gold vesicles (GVs) composed of a monolayer of assembled GNPs show strong absorbance in the near-infrared (NIR) range of 650-800 nm, as a result of the plasmonic(More)