Learn More
MOTIVATION Detecting drug-drug interaction (DDI) has become a vital part of public health safety. Therefore, using text mining techniques to extract DDIs from biomedical literature has received great attentions. However, this research is still at an early stage and its performance has much room to improve. RESULTS In this article, we present a syntax(More)
Gene named entity classification and recognition are crucial preliminary steps of text mining in biomedical literature. Machine learning based methods have been used in this area with great success. In most state-of-the-art systems, elaborately designed lexical features, such as words, n-grams, and morphology patterns, have played a central part. However,(More)
Protein-protein interactions play a key role in various aspects of the structural and functional organization of the cell. Knowledge about them unveils the molecular mechanisms of biological processes. However, the amount of biomedical literature regarding protein interactions is increasing rapidly and it is difficult for interaction database curators to(More)
Extracting protein-protein interaction (PPI) from biomedical literature is an important task in biomedical text mining (BioTM). In this paper, we propose a hash subgraph pairwise (HSP) kernel-based approach for this task. The key to the novel kernel is to use the hierarchical hash labels to express the structural information of subgraphs in a linear time.(More)
OBJECTIVE Knowledge about protein-protein interactions (PPIs) unveils the molecular mechanisms of biological processes. The volume and content of published biomedical literature on protein interactions is expanding rapidly, making it increasingly difficult for interaction database administrators, responsible for content input and maintenance to detect and(More)
The clinical recognition of drug-drug interactions (DDIs) is a crucial issue for both patient safety and health care cost control. Thus there is an urgent need that DDIs be extracted automatically from biomedical literature by text-mining techniques. Although the top-ranking DDIs systems explore various features of texts, these features can't yet adequately(More)
In biomedical research, events revealing complex relations between entities play an important role. Biomedical event trigger identification has become a research hotspot since its important role in biomedical event extraction. Traditional machine learning methods, such as support vector machines (SVM) and maxent classifiers, which aim to manually design(More)
Protein complexes are of great importance in understanding the principles of cellular organization and function. The increase in available protein-protein interaction data, gene ontology and other resources make it possible to develop computational methods for protein complex prediction. Most existing methods focus mainly on the topological structure of(More)
Protein complexes can be identified from the protein interaction networks derived from experimental data sets. However, these analyses are challenging because of the presence of unreliable interactions and the complex connectivity of the network. The integration of protein-protein interactions with the data from other sources can be leveraged for improving(More)