Learn More
BACKGROUND Intermediate filaments (IFs) are major components of the mammalian cytoskeleton and expressed in cell-type-specific patterns. Morphological changes during cell differentiation are linked to IF network remodeling. However, little is known concerning the presence and the role of IFs in embryonic stem (ES) cells and during their differentiation. (More)
DNA methylation is a major epigenetic factor regulating genome reprogramming, cell differentiation and developmental gene expression. To understand the role of DNA methylation in central nervous system (CNS) neurons, we generated conditional Dnmt1 mutant mice that possess approximately 90% hypomethylated cortical and hippocampal cells in the dorsal(More)
Retinal pigment epithelium (RPE) cells can be obtained through in vitro differentiation of both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). We have previously identified 87 signature genes relevant to RPE cell differentiation and function through transcriptome analysis of both human ESC- and iPSC-derived RPE as well as normal(More)
Whether human induced pluripotent stem cells (hiPSCs) are epigenetically identical to human embryonic stem cells (hESCs) has been debated in the stem cell field. In this study, we analyzed DNA methylation patterns in a large number of hiPSCs (n = 114) and hESCs (n = 155), and identified a panel of 82 CpG methylation sites that can distinguish hiPSCs from(More)
DNA methylation is known to regulate cell differentiation and neuronal function in vivo. Here we examined whether deficiency of a de novo DNA methyltransferase, Dnmt3a, affects in vitro differentiation of mouse embryonic stem cells (mESCs) to neuronal and glial cell lineages. Early-passage neural stem cells (NSCs) derived from Dnmt3a-deficient ESCs(More)
The intermediate filament (IF) synemin gene encodes three IF proteins (H 180, M 150, L 41 kDa isoforms) with overlapping distributions. In the present study we analysed the mRNA and protein expression of each isoform in developing mouse embryos. Synemin M mRNA was present as early as E5 with vimentin and nestin. Synemin H was found later at E9 in the(More)
Spinal cord injury (SCI) leads to the loss of sensory, motor, and autonomic function. We aimed to identify the therapeutic targets of-SCI by bioinformatics analysis. The gene expression profile of GSE20907 was downloaded from gene expression omnibus database. By comparing gene expression profiles with control samples, we screened out several differentially(More)
The mechanisms regulating the intermediate filament (IF) protein assembly are complex and not yet fully understood. All vertebrate cytoplasmic IF proteins have a central alpha-helical rod domain flanked by variable head and tail domains. The IF protein synemin cannot homopolymerize to form filament networks; it needs an appropriate copolymerization partner.(More)
Single-cell transcriptome and single-cell methylome technologies have become powerful tools to study RNA and DNA methylation profiles of single cells at a genome-wide scale. A major challenge has been to understand the direct correlation of DNA methylation and gene expression within single-cells. Due to large cell-to-cell variability and the lack of direct(More)
White sponge nevus (WSN) is an autosomal dominant hereditary disease. Keratin 4 (KRT4) and Keratin 13 (KRT13) gene mutations were involved in the WSN. We recruited two WSN Chinese families, and oral lesion biopsy with hematoxylin and eosin staining showed that patients had significant pathological characteristics. The mutations of KRT4 and KRT13 gene were(More)