Learn More
Mammalian pre-implantation development is a complex process involving dramatic changes in the transcriptional architecture. We report here a comprehensive analysis of transcriptome dynamics from oocyte to morula in both human and mouse embryos, using single-cell RNA sequencing. Based on single-nucleotide variants in human blastomere messenger RNAs and(More)
Recent advances in gene editing technology have introduced the potential for application of mutagenesis approaches in nonhuman primates to model human development and disease. Here we report successful TALEN-mediated mutagenesis of an X-linked, Rett syndrome (RTT) gene, methyl-CpG binding protein 2 (MECP2), in both rhesus and cynomolgus monkeys.(More)
Recent studies in desmin (-/-) mice have shown that the targeted ablation of desmin leads to pathological changes of the extrasarcomeric intermediate filament cytoskeleton, as well as structural and functional abnormalities of mitochondria in striated muscle. Here, we report on a novel heterozygous single adenine insertion mutation (c.5141_5143insA) in a(More)
It has been debated whether human induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs) express distinctive transcriptomes. By using the method of weighted gene co-expression network analysis, we showed here that iPSCs exhibit altered functional modules compared with ESCs. Notably, iPSCs and ESCs differentially express 17 modules that(More)
Development of reliable vectors is a major challenge in gene therapy. Previous gene transfer methods using non-viral vectors, such as liposomes or nanoparticles, have resulted in relatively low levels (35 to approximately 50%) of gene expression. We have developed a silicon nanoparticle (SNAP) system, a novel non-viral vector, for DNA transfer into cells.(More)
Retinal pigment epithelium (RPE) cells can be obtained through in vitro differentiation of both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). We have previously identified 87 signature genes relevant to RPE cell differentiation and function through transcriptome analysis of both human ESC- and iPSC-derived RPE as well as normal(More)
Spinal cord injury (SCI) leads to the loss of sensory, motor, and autonomic function. We aimed to identify the therapeutic targets of-SCI by bioinformatics analysis. The gene expression profile of GSE20907 was downloaded from gene expression omnibus database. By comparing gene expression profiles with control samples, we screened out several differentially(More)
The intermediate filament (IF) synemin gene encodes three IF proteins (H 180, M 150, L 41 kDa isoforms) with overlapping distributions. In the present study we analysed the mRNA and protein expression of each isoform in developing mouse embryos. Synemin M mRNA was present as early as E5 with vimentin and nestin. Synemin H was found later at E9 in the(More)
Disorganization of the desmin network is associated with cardiac and skeletal myopathies characterized by accumulation of desmin-containing aggregates in the cells. Multiple associations of intermediate filament proteins form a network to increase mechanical and functional stability. Synemin is a desmin-associated type VI intermediate filament protein.(More)
The corneal endothelium is composed of a monolayer of corneal endothelial cells (CECs), which is essential for maintaining corneal transparency. To better characterize CECs in different developmental stages, we profiled mRNA transcriptomes in human fetal and adult corneal endothelium with the goal to identify novel molecular markers in these cells. By(More)