Learn More
<i>Power dissipation is increasingly important in CPUs ranging from those intended for mobile use, all the way up to high-performance processors for high-end servers. While the bulk of the power dissipated is dynamic switching power, leakage power is also beginning to be a concern. Chipmakers expect that in future chip generations, leakage's proportion of(More)
Leakage power is a major concern in current and future microprocessor designs. In this paper, we explore the potential of architectural techniques to reduce leakage through power-gating of execution units. This paper first develops parameterized analytical equations that estimate the break-even point for application of power-gating techniques. The potential(More)
Simultaneous multithreading (SMT) and chip multiprocessing (CMP) both allow a chip to achieve greater throughput, but their relative energy-efficiency and thermal properties are still poorly understood. This paper uses Turandot, PowerTimer, and HotSpot to explore this design space for a POWER4/POWER5-like core. For an equal-area comparison with this style(More)
This paper explores the multi-dimensional design space for chip multiprocessors, exploring the inter-related variables of core count, pipeline depth, superscalar width, L2 cache size, and operating voltage and frequency, under various area and thermal constraints. The results show the importance of joint optimization. Thermal constraints dominate other(More)
Power dissipation is increasingly important in CPUs ranging from those intended for mobile use, all the way up to high-performance processors for highend servers. Although the bulk of the power dissipated is dynamic switching power, leakage power is also beginning to be a concern. Chipmakers expect that in future chip generations, leakage's proportion of(More)
Clock-gating has been introduced as the primary means of dynamic power management in recent high-end commercial microprocessors. The temperature drop resulting from active power reduction can result in additional leakage power savings in future processors. In this paper we first examine the realistic benefits and limits of clock-gating in current generation(More)
INTRODUCTION Regenerative medicine involves research in a number of fields and disciplines such as stem cell research, tissue engineering and biological therapy in general. As research in these areas advances rapidly, it is critical to keep abreast of emerging trends and critical turns of the development of the collective knowledge. AREAS COVERED A(More)
In the DSP world, many media workloads have to perform a specific amount of work in a specific period of time. This observation led us to examine Simultaneous Multithreading (SMT) and Chip Multiprocessing (CMP) for a VLIW DSP architecture (specifically the Star*Core SC140), in conjunction with Frequency/Voltage scaling to decrease dynamic power consumption(More)
This paper shows that substantial reductions in leakage energy can be obtained by deactivating groups of branch-predictor entries if they lie idle for a sufficiently long time. Decay techniques, first introduced by Kaxiras et al. for caches, work by tracking accesses to cache lines and turning off power to those that lie idle for a sufficiently long period(More)