Learn More
One of the oldest ecological hypotheses, proposed by Darwin, suggests that the struggle for existence is stronger between more closely related species. Despite its long history, the validity of this phylogenetic limiting similarity hypothesis has rarely been examined. Here we provided a formal experimental test of the hypothesis using pairs of bacterivorous(More)
The question of how species diversity affects ecological stability has long interested ecologists and yet remains largely unresolved. Historically, attempts to answer this question have been hampered by the presence of multiple potentially confounding stability concepts, confusion over responses at different levels of ecological organization, discrepancy(More)
One of the oldest ideas in invasion biology, known as Darwin's naturalization hypothesis, suggests that introduced species are more successful in communities in which their close relatives are absent. We conducted the first experimental test of this hypothesis in laboratory bacterial communities varying in phylogenetic relatedness between resident and(More)
Species immigration history can structure ecological communities through priority effects, which are often mediated by competition. As competition tends to be stronger between species with more similar niches, we hypothesize that species phylogenetic relatedness, under niche conservatism, may be a reasonable surrogate of niche similarity between species,(More)
Comparing elevational gradients across a wide spectrum of climatic zones offers an ideal system for testing hypotheses explaining the altitudinal gradients of biodiversity. We document elevational patterns of lizard and snake species richness, and explore how land area and climatic factors may affect species distributions of lizards and snakes. Our(More)
Ecologists have long recognized the roles of competition and disturbance in shaping ecological communities, and the combinatorial effects of these two factors have been the subject of substantial ecological research. Nevertheless, it is still unclear whether competition remains as an important structuring force in habitats strongly influenced by(More)
To better understand the potential impacts of engineered metal oxide nanoparticles (NPs) in the ecosystem, we investigated the acute toxicity of seven different types of engineered metal oxide NPs against Paramecium multimicronucleatum, a ciliated protozoan, using the 48 h LC(50) (lethal concentration, 50%) test. Our results showed that the 48 h LC(50)(More)
A central goal of invasion biology is to elucidate mechanisms regulating community invasibility. Darwin's naturalization hypothesis, one of the oldest hypotheses in invasion biology, emphasizes the importance of phylogenetic relatedness (PR) between resident and invader species for predicting invasibility. Alternatively, a recent extension of the(More)
The potential environmental impacts of engineered cerium oxide nanoparticles (CeO2 NPs) on aquatic organisms have remained largely unknown. Therefore, the laboratory study featured herein was performed to determine the fate of CeO2 NPs in an aquatic environment and their toxicity towards 14 different ciliated protist species at a specified population level.(More)
Daytime warming and nighttime warming have the potential to influence plant community structure and ecosystem functions. However, their impacts on ecological stability remain largely unexplored. We conducted an eight-year field experiment to compare the effects of daytime and nighttime warming on the temporal stability of a temperate steppe in northern(More)