Learn More
In recent years, the distribution of dopamine receptor subtypes among the principal neurons of the neostriatum has been the subject of debate. Conventional anatomical and physiological approaches have yielded starkly different estimates of the extent to which D1 and D2 class dopamine receptors are colocalized. One plausible explanation for the discrepancy(More)
The physiological state of the cell is controlled by signal transduction mechanisms which regulate the balance between protein kinase and protein phosphatase activities. Here we report that a single protein can, depending on which particular amino-acid residue is phosphorylated, function either as a kinase or phosphatase inhibitor. DARPP-32 (dopamine and(More)
The signaling pathways mediating the muscarinic modulation of Ca2+ currents in neostriatal cholinergic interneurons were studied by combined patch-clamp recording and single-cell reverse transcription-PCR. Cholinergic interneurons were identified by the presence of choline acetyltransferase mRNA. These neurons expressed Q-, N-, L-, P-, and R-type Ca2+(More)
Cocaine enhances dopamine-mediated neurotransmission by blocking dopamine re-uptake at axon terminals. Most dopamine-containing nerve terminals innervate medium spiny neurons in the striatum of the brain. Cocaine addiction is thought to stem, in part, from neural adaptations that act to maintain equilibrium by countering the effects of repeated drug(More)
Modulation of AMPA-type glutamate channels is important for synaptic plasticity. Here we provide physiological evidence that the activity of AMPA channels is regulated by protein phosphatase 1 (PP-1) in neostriatal neurons and identify two distinct molecular mechanisms of this regulation. One mechanism involves control of PP-1 catalytic activity by(More)
Corticosteroid stress hormones have a strong impact on the function of prefrontal cortex (PFC), a central region controlling cognition and emotion, though the underlying mechanisms are elusive. We found that behavioral stressor or short-term corticosterone treatment in vitro induces a delayed and sustained potentiation of the synaptic response and surface(More)
Dopamine has long been known to regulate the activity of striatal cholinergic interneurons and the release of acetylcholine. Yet, the cellular mechanisms by which this regulation occurs have not been elucidated. One way in which dopamine might act is by modulating voltage-dependent Ca2+ channels. To test this hypothesis, the impact of dopaminergic agonists(More)
Serotonergic neurotransmission in prefrontal cortex (PFC) has long been known to play a key role in regulating emotion and cognition under normal and pathological conditions. However, the cellular mechanisms by which this regulation occurs are unclear. In this study, we examined the impact of serotonin on GABA(A) receptor channels in PFC pyramidal neurons(More)
Inwardly rectifying K+ (IRK) channels are critical for shaping cell excitability. Whole-cell patch-clamp and single-cell RT-PCR techniques were used to characterize the inwardly rectifying K+ currents found in projection neurons of the rat nucleus accumbens. Inwardly rectifying currents were highly selective for K+ and blocked by low millimolar(More)
Spinophilin, a protein that interacts with actin and protein phosphatase-1, is highly enriched in dendritic spines. Here, through the use of spinophilin knockout mice, we provide evidence that spinophilin modulates both glutamatergic synaptic transmission and dendritic morphology. The ability of protein phosphatase-1 to regulate the activity of(More)