Learn More
Brassinosteroids (BRs) bind to the extracellular domain of the receptor kinase BRI1 to activate a signal transduction cascade that regulates nuclear gene expression and plant development. Many components of the BR signaling pathway have been identified and studied in detail. However, the substrate of BRI1 kinase that transduces the signal to downstream(More)
When brassinosteroid levels are low, the GSK3-like kinase BIN2 phosphorylates and inactivates the BZR1 transcription factor to inhibit growth in plants. Brassinosteroid promotes growth by inducing dephosphorylation of BZR1, but the phosphatase that dephosphorylates BZR1 has remained unknown. Here, using tandem affinity purification, we identified protein(More)
The plant steroid hormones brassinosteroids (BRs) play an important role in a wide range of developmental and physiological processes. How BR signaling regulates diverse processes remains unclear. To understand the molecular details of BR responses, we performed a proteomics study of BR-regulated proteins in Arabidopsis using two-dimensional DIGE coupled(More)
Eight conducting polymer films of polypyrrole and its derivatives were used as sensitive and selective coatings for thickness-shear mode (TSM) acoustic wave sensors. They were applied to the detection of volatile alcohols and carbonyl compounds, which are important fish freshness determinants. The conducting polymers were synthesized and coated on TSM(More)
Plants adapt to environmental light conditions by photoreceptor-mediated physiological responses, but the mechanism by which photoreceptors perceive and transduce the signals is still unresolved. Here, we used 2D difference gel electrophoresis (2D DIGE) and mass spectrometry to characterize early molecular events induced by short blue light exposures in(More)
Changes of structure and thermal stability of soy protein isolate after pulsed electric field treatment were analyzed by Fourier transform infrared spectroscopy and differential scanning calorimetry (DSC). When the applied pulsed electric field (PEF) treatment intensity was over 35 kV/cm, the amino acid side chain, anti-parallel b-sheets, b-turn as well as(More)
Rice bacterial blight (BB) caused by Xanthomonas oryzae pv.oryzae (Xoo) is one of the most devastating bacterial diseases in rice-growing regions worldwide. The rice-Xoo interaction is a classical model for studying the interaction between plants and pathogens. Secreted proteins play important roles in plant-bacterial interactions, but are poorly studied in(More)
In 2009, the draft genome of the reference inbred line of maize (Zea mays L. spp. mays cv. B73) was published so that, using this specific corn variety, molecular analyses of physiological processes became possible. However, the morphology and developmental patterns of B73 maize, compared with that of the more frequently used hybrid varieties, have not yet(More)
Oryza meyeriana, a wild species of rice from China, shows high resistance to Xanthomonas oryzae pv. oryzae (Xoo), the cause of rice bacterial blight, one of the most serious rice pathogens. To better understand the resistance mechanism, a proteomic study was conducted to identify changes in the proteins secreted in embryo cell suspension cultures in(More)