Learn More
Hyperpolarization-activated cyclic nucleotide-gated (HCN) cation channels are encoded by HCN1-4 gene family and have four subtypes. These channels are activated upon hyperpolarization of membrane potential and conduct an inward, excitatory current Ih in the nervous system. Ih acts as pacemaker current to initiate rhythmic firing, dampen dendritic(More)
Behavioral studies have demonstrated that both medial prefrontal cortex (mPFC) and cerebellum play critical roles in trace eyeblink conditioning. However, little is known regarding the mechanism by which the two brain regions interact. By use of electrical stimulation of the caudal mPFC as a conditioned stimulus, we show evidence that persistent outputs(More)
Hypocretins are crucial for the regulation of wakefulness by the excitatory actions on multiple subcortical arousal systems. To date, there is little information about the direct postsynaptic excitatory effects of hypocretins on the neurons in prefrontal cortex (PFC), which is important for higher cognitive functions and is correlated with level of(More)
Our previous observations showed that several stimuli, including high-K(+) solution, glutamate, and voltage pulses, induce somatic noradrenaline (NA) secretion from locus ceruleus (LC) neurons. Hypocretin (orexin), a hypothalamic peptide critical for normal wakefulness, has been shown to evoke NA release from the axon terminals of LC neurons. Here, we used(More)
The hyperpolarization-activated/cyclic nucleotide (HCN)-gated channels make important contributions to neural excitability. In prefrontal cortex, HCN channels are localized on the distal dendrites of layer V pyramidal neurons and decrease neural excitability when they are open. In the present study, using whole-cell voltage clamp recordings, the effect of(More)
The hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels, or cardiac (I(f))/neuronal (I(h)) time- and voltage-dependent inward cation current channels, are conventionally considered as monovalent-selective channels. Recently we discovered that calcium ions can permeate through HCN4 and I(h) channels in neurons. This raises the possibility of(More)
The hypocretins (Hcrts), also known as orexins, are two peptides derived from a single precursor produced in the posterior lateral hypothalamus. Over the past decade, the orexin system has been associated with numerous physiological functions, including sleep/arousal, energy homeostasis, endocrine, visceral functions and pathological states, such as(More)
Several studies have shown that astrocytes release neurotransmitters into the extracellular space that may then activate receptors on nearby neurons. In the present study, the actions of adenosine 5'-O-(2-thiodiphosphate) (ADPbetaS)-activated astrocyte conditioned medium (ADPbetaS-ACM) on cultured dorsal spinal cord neurons were evaluated by using confocal(More)
Stellate neurons in layer II entorhinal cortex (EC) provide the main output from the EC to the hippocampus. It is believed that adenosine plays a crucial role in neuronal excitability and synaptic transmission in the CNS, however, the function of adenosine in the EC is still elusive. Here, the data reported showed that adenosine hyperpolarized stellate(More)
The key role of the hypothalamic neuropeptides orexins in maintenance and promotion of arousal has been well established in normal mammalian animals, but whether orexins exert arousal effects under pathological condition such as coma was little studied. In this study, a model of unconscious rats induced by acute alcohol intoxication was used to examine the(More)