#### Filter Results:

#### Publication Year

1992

2016

#### Co-author

#### Key Phrase

#### Publication Venue

Learn More

The combinatorial properties of the Fibonacci infinite word are of great interest in some aspects of mathematics and physics, such as number theory, fractal geometry, formal language, computational complexity , quasicrystals etc. In this note, we introduce the singular words of the Fibonacci infinite word and discuss their properties. We establish two… (More)

In this paper, we prove that a class of regular sequences can be viewed as projections of fixed points of uniform morphisms on a countable alphabet, and also can be generated by countable states automata. Moreover, we prove that the regularity of some regular sequences is invariant under some codings.

We consider the complexities of substitutive sequences over a binary alphabet. By studying various types of special words, we show that, knowing some initial values, its complexity can be completely formulated via a recurrence formula determined by the characteristic polynomial.

- ‹
- 1
- ›