Learn More
We propose a strategy for achieving maximum cooperation in evolutionary games on complex networks. Each individual is assigned a weight that is proportional to the power of its degree, where the exponent alpha is an adjustable parameter that controls the level of diversity among individuals in the network. During the evolution, every individual chooses one(More)
How effective are governmental incentives to achieve widespread vaccination coverage so as to prevent epidemic outbreak? The answer largely depends on the complex interplay among the type of incentive, individual behavioral responses, and the intrinsic epidemic dynamics. By incorporating evolutionary games into epidemic dynamics, we investigate the effects(More)
Previous works on traffic-flow dynamics on complex networks have mostly focused on continuous phase transition from a free-flow state to a locally congested state as a parameter, such as the packet-generating rate, is increased through a critical value. Above the transition point congestion occurs on a small subset of nodes. Utilizing a conventional(More)
We study a modified prisoner's dilemma game taking place on two-dimensional disordered square lattices. The players are pure strategists and can either cooperate or defect with their immediate neighbors. In the generations each player updates its strategy by following one of the neighboring strategies with a probability dependent on the payoff difference.(More)
A modified spatial prisoner's dilemma game with voluntary participation in Newman-Watts small-world networks is studied. Some reasonable ingredients are introduced to the game evolutionary dynamics: each agent in the network is a pure strategist and can only take one of three strategies (cooperator, defector, and loner); its strategical transformation is(More)
It is increasingly recognized that a key component of successful infection control efforts is understanding the complex, two-way interaction between disease dynamics and human behavioral and social dynamics. Human behavior such as contact precautions and social distancing clearly influence disease prevalence, but disease prevalence can in turn alter human(More)
We investigate a game-theoretic model of a social system where both the rules of the game and the interaction structure are shaped by the behavior of the agents. We call this type of model, with several types of feedback couplings from the behavior of the agents to their environment, a multiadaptive game. Our model has a complex behavior with several(More)
We study evolutionary prisoner's dilemma game by considering adaptive strategy-selection time scale among individuals according to a "win-slower, lose-faster" rule: if an individual successfully resists the invasion of an opponent, she is prone to hold her strategy for longer time through decreasing her strategy-selection time scale; otherwise, she(More)
Facing the threats of infectious diseases, we take various actions to protect ourselves, but few studies considered an evolving system with competing strategies. In view of that, we propose an evolutionary epidemic model coupled with human behaviors, where individuals have three strategies: vaccination, self-protection and laissez faire, and could adjust(More)
In a recent work [Proc. Natl. Acad. Sci. USA 108, 3838 (2011)], Schneider et al. proposed a new measure for network robustness and investigated optimal networks with respect to this quantity. For networks with a power-law degree distribution, the optimized networks have an onion structure-high-degree vertices forming a core with radially decreasing degrees(More)