Zhi Qun Tang

Learn More
Major histocompatibility complex (MHC)-binding peptides are essential for antigen recognition by T-cell receptors and are being explored for vaccine design. Computational methods have been developed for predicting MHC-binding peptides of fixed lengths, based on the training of relatively few non-binders. It is desirable to introduce methods applicable for(More)
BACKGROUND Computational methods have been developed for predicting allergen proteins from sequence segments that show identity, homology, or motif match to a known allergen. These methods achieve good prediction accuracies, but are less effective for novel proteins with no similarity to any known allergen. METHODS This work tests the feasibility of using(More)
Microarrays have been explored for deriving molecular signatures to determine disease outcomes, mechanisms, targets, and treatment strategies. Although exhibiting good predictive performance, some derived signatures are unstable due to noises arising from measurement variability and biological differences. Improvements in measurement, annotation, and(More)
Various computational methods have been used for the prediction of protein and peptide function based on their sequences. A particular challenge is to derive functional properties from sequences that show low or no homology to proteins of known function. Recently, a machine learning method, support vector machines (SVM), have been explored for predicting(More)
Microarrays have been explored for deriving molecular signatures to determine disease outcomes, mechanisms, targets, and treatment strategies. Although exhibiting good predictive performance, some derived signatures are unstable due to noises arising from measurement variability and biological differences. Improvements in measurement, annotation, and(More)
  • 1