Learn More
With a unique structure and extraordinary properties, graphene has attracted tremendous attention in the preparation of graphene-based composites for various applications. In this study, two different strategies, including in situ growth and a self-assembly approach, have been developed to load CeO2 nanoparticles onto reduced graphene oxide (RGO)(More)
Highly stable graphene aqueous dispersions were achieved by chemical reduction of graphene oxide with an environmentally friendly reagent of hexamethylenetetramine (HMTA). By this method, chemical reduction as well as dispersion of graphene can be carried out in one step without the need of organic stabilizers or pH control. The as-synthesized products were(More)
The strategy of structurally integrating noble metal, metal oxide, and graphene is expected to offer prodigious opportunities toward emerging functions of graphene-based nanocomposites. In this study, we develop a facile two-step approach to disperse noble metal (Pt and Au) nanoparticles on the surface of CeO2 functionalized reduced graphene oxide (RGO)(More)
Two-dimensional (2D) nanosheets possess the very essential features of nanomaterials, including quantum-confinement effects and unconventional reactivity, and are of special interest for a variety of promising applications. Here we report a facile chemical transformation strategy to prepare porous ZnS nanosheets via the organic-inorganic hybrid(More)
In this study, the combination of magnetite (Fe3O4) with reduced graphene oxide (RGO) generates a new hybrid substrate for the dispersion of noble metal nanoparticles. Well-dispersed silver (Ag) nanoparticles loaded on the surface of Fe3O4 modified RGO are achieved by an efficient two-step approach. Through reducing Ag(+) ions, highly dispersed Ag(More)
In this work, for the first time, three-component CeO2@Ag@CdS heterostructured nanotube arrays with remarkable photoelectrochemical (PEC) performance have been synthesized by an electrodeposition method. In this configuration, the modification with Ag nanoparticles can significantly strengthen light absorption and provide an interior direct pathway to(More)
A composite with porous NiCo2O4 nanosheets attached on reduced graphene oxide (RGO) sheets is synthesized through a facile solution-based method combined with a simple thermal annealing process. The capacitive performances of the as-prepared NiCo2O4/RGO (NCG) composites as electrode materials are investigated. It is found that the NCG composites exhibit a(More)
Visible-light-driven photocatalysis as a green technology has attracted intense interest due to its potential applications in environmental remediation. However, the poor visible light utilization and low electron-hole separation efficiency of photocatalysts largely limited their practical application. In this work, a new ternary visible-light driven(More)
Developing hybrid nanocrystals is a hot topic in materials science. Herein, a ternary hybrid nanocrystal, Ag-Ag2S-CdS, combining near infrared emission and photothermal conversion properties was demonstrated. The ternary Ag-Ag2S-CdS hybrid nanocrystals with cubic shape and uniform size were synthesized by a simple one-pot and one-step colloidal method. The(More)
In this study, reduced graphene oxide (RGO) supported Ni nanoparticles were synthesized by a facile in-situ refluxing approach using triethylene glycol as both reductive and dispersing agent. The as-synthesized RGO/Ni nanocomposites were characterized by X-ray diffraction, Raman spectroscopy and transmission electron microscopy, which revealed that Ni(More)