Learn More
While the mammalian retina is well understood at the anatomical and physiological levels, little is known about the mechanisms that give rise to the retina's highly ordered pattern or its diverse neuronal cell types. Previous investigations have shown that gene disruption of the POU-IV class transcription factor Brn-3b (Brn-3.2) resulted in the loss of most(More)
Accumulation of β-amyloid (Aβ) and loss of synapses are hallmarks of Alzheimer's disease (AD). How synaptic activity relates to Aβ accumulation and loss of synapses is a current topic of major interest. Synaptic activation promotes Aβ secretion, and chronic reduction of synaptic activity reduced Aβ plaques in an AD transgenic mouse model. This suggested(More)
A central question in Alzheimer's disease research is what role synaptic activity plays in the disease process. Synaptic activity has been shown to induce beta-amyloid peptide release into the extracellular space, and extracellular beta-amyloid has been shown to be toxic to synapses. We now provide evidence that the well established synaptotoxicity of(More)
Three weeks of hypoxic exposure results in a spectrum of systemic physiological and local brain tissue adaptations. Cytochrome oxidase histochemistry was used as an indicator of changes in energy demand in response to hypoxia. We found overall cytochrome oxidase activity decreased in hypoxic adapted rats as compared to normoxic control rats. Some regions,(More)
Proper formation of the shape and size of cortical functional areas is essential for complex brain function, including sensory perception and motor control. Our previous work identified the transcription factor Lim domain only 4 (Lmo4), a regulator in calcium-dependent gene transcription, that has unique, region-specific expression in postnatal mouse(More)
One of the hallmarks of the primate striate cortex is the presence of cytochrome oxidase-rich puffs in its supragranular layers. Neurons in puffs have been classified as type A, B, and C in ascending order of cytochrome oxidase content, with type C cells being the most vulnerable to retinal impulse blockade. The present study aimed at analysing cytochrome(More)
BACKGROUND AND PURPOSE Mutations in the low-density lipoprotein receptor (LDLR) gene cause familial hypercholesterolaemia in humans and deletion of the LDLR induces lesion development in mice fed a high-fat diet. LDLR expression is predominantly regulated by sterol regulatory element-binding protein 2 (SREBP2). Fenofibrate, a peroxisome(More)
  • 1