Learn More
Recent genome-wide association studies suggest distinct roles for 12 human interferon-alpha (IFN-α) and 3 IFN-λ subtypes that may be elucidated by defining the expression patterns of these sets of genes. To overcome the impediment of high homology among each of the sets, we designed a quantitative real-time PCR assay that incorporates the use of molecular(More)
SARS-CoV 3a protein was a unique protein of SARS coronavirus (SARS-CoV), which was identified in SARS-CoV infected cells and SARS patients' specimen. Recent studies revealed that 3a could interact specifically with many SARS-CoV structural proteins, such as M, E and S protein. Expressed 3a protein was reported to localize to Golgi complex in SARS-CoV(More)
The open reading frame 3 (ORF3) of the severe acute respiratory syndrome coronavirus (SARS-CoV) genome encodes a predicted 154-amino acid protein, which lacks similarities to any known protein, and is named 3b. In this study, it was shown that 3b protein was predominately localized to nucleus with EGFP tag at its N- or C-terminus. The localization patterns(More)
A variety of hematopoietic factors including granulocyte macrophage colony-stimulating factor (GM-CSF), granulocyte colony-stimulating factor (G-CSF), interleukin 3 (IL-3) and thrombopoietin (TPO) induce a rapid increase of intracellular reactive oxygen species (ROS). ROS induces the activation of many signaling molecules, including Shc, Lck, syk, PKC,(More)
Severe Acute Respiratory Syndrome coronavirus (SARS-CoV), cause of the life-threatening atypical pneumonia, infects many organs, such as lung, liver and immune organ, and induces parenchyma cells apoptosis and necrosis. The genome of SARS-CoV, not closely related to any of the previously characterized coronavirus, encodes replicase and four major structural(More)
Severe acute respiratory syndrome-associated coronavirus (SARS-CoV), a distant member of the Group 2 coronaviruses, has recently been identified as the etiological agent of severe acute respiratory syndrome (SARS). The genome of SARS-CoV contains four structural genes that are homologous to genes found in other coronaviruses, as well as six(More)
The genome of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) contains four structural genes that are homologous to genes found in other coronaviruses, and also contains six subgroup-specific open reading frames (ORFs). Expression of one of these subgroup-specific genes, ORF7a, resulted in apoptosis via a caspase-dependent pathway. Here,(More)
SARS-CoV 3a is a structural protein, mainly localizing to Golgi apparatus and co-localizing with SARS-CoV M in co-transfected cells. Here we observed that transient expression of 3a inhibited cell growth and prevented 5-bromodeoxyuridine incorporation, suggesting that 3a deregulated cell cycle progression. Cell cycle analysis demonstrated that 3a expression(More)
Granulocyte colony-stimulating factor (G-CSF) is the major cytokine involved in the control of neutrophil development. G-CSF activates the special receptor, the G-CSF receptor (GCSF-R), which subsequently triggers multiple signaling events. To obtain more interactive molecules with GCSF-R and to further understand the cellular signaling mechanism of GCSF-R,(More)
Lumbrokinase-3 (LK-3, AY438622), first cloned from the earthworm Eisenia foetida in our laboratory, is a component of earthworm fibrinolytic enzymes. In this study, cDNA encoding the LK-3 gene was sub-cloned into yeast pPIC9K expression vector and transformed into the Pichia pastoris GS115 cells by electroporation. High level expression of LK-3 in yeast(More)