Learn More
We demonstrate a sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure sensing applications. The thinnest silica diaphragm, with a thickness of ∼320  nm, has been achieved by use of an improved electrical arc discharge technique. Such a sub-micron silica diaphragm breaks the sensitivity limitation imposed by traditional(More)
We demonstrated a unique rectangular air bubble by means of splicing two sections of standard single mode fibers together and tapering the splicing joint. Such an air bubble can be used to develop a promising high-sensitivity strain sensor based on Fabry-Perot interference. The sensitivity of the strain sensor with a cavity length of about 61 μm and a wall(More)
Resonance fluorescence in the Heitler regime provides access to single photons with coherence well beyond the Fourier transform limit of the transition, and holds the promise to circumvent environment-induced dephasing common to all solid-state systems. Here we demonstrate that the coherently generated single photons from a single self-assembled InAs(More)
We demonstrated a high-sensitivity strain sensor based on an in-fiber Fabry-Perot interferometer (FPI) with an air cavity, which was created by splicing together two sections of standard single-mode fibers. The sensitivity of this strain sensor was enhanced to 6.0  pm/με by improving the cavity length of the FPI by means of repeating arc discharges for(More)
We demonstrated a high-sensitivity strain sensor based on an inflated long period fiber grating (I-LPFG). The I-LPFG was inscribed, for the first time to the best of our knowledge, by use of the pressure-assisted CO(2) laser beam scanning technique to inflate periodically air holes of a photonic crystal fiber. Such periodic inflations enhanced the(More)
We propose an all-optical intensity differentiation scheme based on cross-polarization modulation (XPolM) in a semiconductor optical amplifier (SOA) while demonstrating the absolute value of differential signal that can be obtained by the SOA-based XPolM of two parts with relative delay from the input signal and well extracted by the polarization filter.(More)
Global positioning system reflectometry (GPS-R) is an emerging area of GPS applications in microwave remote sensing using multipath reflected signals. Soil moisture estimation is one of the many potential applications of the GPS-R technique. The focus of this study is on investigating the feasibility of soil moisture estimation based on GPS L1 band(More)
We reported a gas pressure sensor based on CO 2-laser-induced long-period fiber grating (LPFG) in an air-core photonic bandgap fiber (PBF). The LPFG was inscribed in an air-core PBF by the use of an improved CO 2 laser system with an ultrapre-cision 2-D scanning technique, which induced periodic collapses of air holes along the axis of the PBF. Such an LPFG(More)
We investigated a novel and ultracompact polymer-capped Fabry-Perot interferometer, which is based on a polymer capped on the endface of a single mode fiber (SMF). The proposed Fabry-Perot interferometer has advantages of easy fabrication, low cost, and high sensitivity. The variation of the Fabry-Perot cavity length can be easily controlled by using the(More)
A Mach-Zehnder interferometer based on a twin-core fiber was proposed and experimentally demonstrated for gas pressure measurements. The in-line Mach-Zehnder interferometer was fabricated by splicing a short section of twin-core fiber between two single mode fibers. A micro-channel was created to form an interferometer arm by use of a femtosecond laser to(More)