Zhengtao Deng

Learn More
One of the most highlighted and fastest moving interfaces of nanotechnology is the application of quantum dots (QDs) in biology. The unparalleled advantages of the size-tunable fluorescent emission and the simultaneous excitation at a single wavelength make QDs the great possibility for use in optical encoding detection. In this paper, we report that green(More)
We present a strategy to design and construct self-assembling DNA nanostructures that define intricate curved surfaces in three-dimensional (3D) space using the DNA origami folding technique. Double-helical DNA is bent to follow the rounded contours of the target object, and potential strand crossovers are subsequently identified. Concentric rings of DNA(More)
Here we demonstrate Au nanoparticle self-similar chain structure organized by triangle DNA origami with well-controlled orientation and <10 nm spacing. We show for the first time that a large DNA complex (origami) and multiple AuNP conjugates can be well-assembled and purified with reliable yields. The assembled structure could be used to generate high(More)
We demonstrate the synthesis of quaternary-alloyed Zn(x)Cd(1-x)S(y)Se(1-y) quantum dots (ZnCdSSe QQDs) across the entire composition range (x, y) = 0 to 1 with a size tunable from 4.0 to 10.0 nm by a facile, "green", phosphine-free, low-cost colloidal method. The ZnCdSSe QQDs have both composition- and size-dependent band gaps, which can be(More)
Nearly monodispersed self-assembled tin dioxide (SnO2) nanospheres with intense photoluminescence (PL) were synthesized using a new wet chemistry technique. Instead of coprecipitating stannous salts, bulk tin (Sn) metal was oxidized at room temperature in a solution of hydrogen peroxide and deionized water containing polyvinylpyrrolidone (PVP) and(More)
Programmable positioning of one-dimensional (1D) gold nanorods (AuNRs) was achieved by DNA directed self-assembly. AuNR dimer structures with various predetermined inter-rod angles and relative distances were constructed with high efficiency. These discrete anisotropic metallic nanostructures exhibit unique plasmonic properties, as measured experimentally(More)
We report a simple, fast and green phosphine-free colloidal chemistry to synthesize high-quality wurtzite-type Mn-doped ZnS quantum rods (QRs) with tunable diameters (1.6-5.6 nm), high aspect ratios (up to 50), variable Mn doping levels (0.18-1.60%), and high quantum yields (up to 45%). The electron paramagnetic resonance spectra with modeling reveal the(More)
Here we demonstrate the aqueous synthesis of colloidal nanocrystal heterostructures consisting of the CdTe core encapsulated by CdS/ZnS or CdSe/ZnS shells using glutathione (GSH), a tripeptide, as the capping ligand. The inner CdTe/CdS and CdTe/CdSe heterostructures have type-I, quasi-type-II, or type-II band offsets depending on the core size and shell(More)