Learn More
Many natural underwater adhesives harness hierarchically assembled amyloid nanostructures to achieve strong and robust interfacial adhesion under dynamic and turbulent environments. Despite recent advances, our understanding of the molecular design, self-assembly and structure-function relationships of these natural amyloid fibres remains limited. Thus,(More)
We present a strategy to design and construct self-assembling DNA nanostructures that define intricate curved surfaces in three-dimensional (3D) space using the DNA origami folding technique. Double-helical DNA is bent to follow the rounded contours of the target object, and potential strand crossovers are subsequently identified. Concentric rings of DNA(More)
Here we demonstrate Au nanoparticle self-similar chain structure organized by triangle DNA origami with well-controlled orientation and <10 nm spacing. We show for the first time that a large DNA complex (origami) and multiple AuNP conjugates can be well-assembled and purified with reliable yields. The assembled structure could be used to generate high(More)
Many natural biological systems--such as biofilms, shells and skeletal tissues--are able to assemble multifunctional and environmentally responsive multiscale assemblies of living and non-living components. Here, by using inducible genetic circuits and cellular communication circuits to regulate Escherichia coli curli amyloid production, we show that E.(More)
Many natural underwater adhesives harness hierarchically assembled amyloid nanostructures to achieve strong and robust interfacial adhesion under dynamic and turbulent environments. Despite recent advances, our understanding of the molecular design, self-assembly, and structure-function relationship of those natural amyloid fibers remains limited. Thus,(More)
The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Abstract Many natural underwater adhesives harness hierarchically assembled amyloid nanostructures to achieve strong and robust interfacial adhesion under dynamic and turbulent environments. Despite recent advances, our understanding of the(More)
  • 1