Learn More
Angiosperms are the largest and most successful clade of land plants with >250,000 species distributed in nearly every terrestrial habitat. Many phylogenetic studies have been based on DNA sequences of one to several genes, but, despite decades of intensive efforts, relationships among early diverging lineages and several of the major clades remain either(More)
The plastid genome of Trifolium subterraneum is 144,763 bp, about 20 kb longer than those of closely related legumes, which also lost one copy of the large inverted repeat (IR). The genome has undergone extensive genomic reconfiguration, including the loss of six genes (accD, infA, rpl22, rps16, rps18, and ycf1) and two introns (clpP and rps12) and numerous(More)
The magnoliids with four orders, 19 families, and 8,500 species represent one of the largest clades of early diverging angiosperms. Although several recent angiosperm phylogenetic analyses supported the monophyly of magnoliids and suggested relationships among the orders, the limited number of genes examined resulted in only weak support, and these issues(More)
A novel, plant growth-promoting bacterium Delftia tsuruhatensis, strain HR4, was isolated from the rhizoplane of rice (Oryza sativa L., cv. Yueguang) in North China. In vitro antagonistic assay showed this strain could suppress the growth of various plant pathogens effectively, especially the three main rice pathogens (Xanthomonas oryzae pv. oryzae,(More)
Retroposition is widely found to play essential roles in origination of new mammalian and other animal genes. However, the scarcity of retrogenes in plants has led to the assumption that plant genomes rarely evolve new gene duplicates by retroposition, despite abundant retrotransposons in plants and a reported long terminal repeat (LTR)(More)
We have determined the complete chloroplast genome sequences of four early-diverging lineages of angiosperms, Buxus (Buxaceae), Chloranthus (Chloranthaceae), Dioscorea (Dioscoreaceae), and Illicium (Schisandraceae), to examine the organization and evolution of plastid genomes and to estimate phylogenetic relationships among angiosperms. For the most part,(More)
A variety of plant associated beneficial bacteria (PABB) occur in rhizosphere of many plants. This study developed an oligonucleotide microarray for detection and identification of these PABBs and evaluated the oligonucleotide microarray with 43 pure cultures of PABB which were well-identified by sequencing the initial 600-800 bp of the 16S rRNA gene.(More)
  • 1