Learn More
[1] Our current understanding of terrestrial carbon processes is represented in various models used to integrate and scale measurements of CO 2 exchange from remote sensing and other spatiotemporal data. Yet assessments are rarely conducted to determine how well models simulate carbon processes across vegetation types and environmental conditions. Using(More)
We describe a new remote sensing system called the Short Wave Aerostat-Mounted Imager (SWAMI). The SWAMI is designed to acquire co-located video imagery and hyperspectral data to study basic remote sensing questions and to link landscape level trace gas fluxes with spatially and temporally appropriate spectral observations. The SWAMI can fly at altitudes up(More)
Competition for water between humans and ecosystems is set to become a flash point in the coming decades in many parts of the world. An entirely new and comprehensive quantitative framework is needed to establish a holistic understanding of that competition, thereby enabling the development of effective mediation strategies. This paper presents a modeling(More)
Quantifying the spatial and temporal dynamics of carbon stocks in terrestrial ecosystems and carbon fluxes between the terrestrial biosphere and the atmosphere is critical to our understanding of regional patterns of carbon budgets. Here we use the General Ensemble biogeochem-ical Modeling System to simulate the terrestrial ecosystem carbon dynamics in the(More)
BACKGROUND Tillage practices greatly affect carbon (C) stocks in agricultural soils. Quantification of the impacts of tillage on C stocks at a regional scale has been challenging because of the spatial heterogeneity of soil, climate, and management conditions. We evaluated the effects of tillage management on the dynamics of soil organic carbon (SOC) in(More)
  • 1