Learn More
Deleting a gene in an organism often has little phenotypic effect, owing to two mechanisms of compensation. The first is the existence of duplicate genes: that is, the loss of function in one copy can be compensated by the other copy or copies. The second mechanism of compensation stems from alternative metabolic pathways, regulatory networks, and so on.(More)
We conducted a detailed analysis of duplicate genes in three complete genomes: yeast, Drosophila, and Caenorhabditis elegans. For two proteins belonging to the same family we used the criteria: (1) their similarity is > or =I (I = 30% if L > or = 150 a.a. and I = 0.01n + 4.8L(-0.32(1 + exp(-L/1000))) if L < 150 a.a., where n = 6 and L is the length of the(More)
For more than 30 years, expression divergence has been considered as a major reason for retaining duplicated genes in a genome, but how often and how fast duplicate genes diverge in expression has not been studied at the genomic level. Using yeast microarray data, we show that expression divergence between duplicate genes is significantly correlated with(More)
We sequenced the genome of Saccharomyces cerevisiae strain YJM789, which was derived from a yeast isolated from the lung of an AIDS patient with pneumonia. The strain is used for studies of fungal infections and quantitative genetics because of its extensive phenotypic differences to the laboratory reference strain, including growth at high temperature and(More)
Understanding the evolution of gene function is a primary challenge of modern evolutionary biology. Despite an expanding database from genomic and developmental studies, we are lacking quantitative methods for analyzing the evolution of some important measures of gene function, such as gene-expression patterns. Here, we introduce phylogenetic comparative(More)
Accurate estimates of mutation rates provide critical information to analyze genome evolution and organism fitness. We used whole-genome DNA sequencing, pulse-field gel electrophoresis, and comparative genome hybridization to determine mutation rates in diploid vegetative and meiotic mutation accumulation lines of Saccharomyces cerevisiae. The vegetative(More)
BACKGROUND Following gene duplication, two duplicate genes may experience relaxed functional constraints or acquire different mutations, and may also diverge in function. Whether the two copies will evolve in different patterns remains unclear, however, because previous studies have reached conflicting conclusions. In order to resolve this issue, by(More)
Whether nonessential genes evolve faster than essential genes has been a controversial issue. To resolve this issue, we use the data from a nearly complete set of single-gene deletions in the yeast Saccharomyces cerevisiae to assess protein dispensability. Also, instead of the nematode, which was used previously but is only distantly related to S.(More)
A majority of mitochondrial DNA (mtDNA) mutations reported to be implicated in diseases are heteroplasmic, a status with coexisting mtDNA variants in a single cell. Quantifying the prevalence of mitochondrial heteroplasmy and its pathogenic effect in healthy individuals could further our understanding of its possible roles in various diseases. A total of(More)
By using the maximum likelihood method, we made a genome-wide comparison of the evolutionary rates in the lineages leading to the laboratory strain (S288c) and a wild strain (YJM789) of Saccharomyces cerevisiae and found that genes in the laboratory strain tend to evolve faster than in the wild strain. The pattern of elevated evolution suggests that(More)