Zhenghui Zhang

Learn More
Parallel excitation has been introduced as a means of accelerating multidimensional, spatially-selective excitation using multiple transmit coils, each driven by a unique RF pulse. Previous approaches to RF pulse design in parallel excitation were either formulated in the frequency domain or restricted to echo-planar trajectories, or both. This paper(More)
Current standard sensitivity-encoded parallel imaging (SENSE) utilizes a fully sampled low-resolution reference scan to estimate the coil sensitivities. This reference scan adds scan time and may introduce misregistration artifacts. The purpose of this study was to investigate the feasibility of estimating the coil sensitivities for spiral SENSE directly(More)
Parallel transmitter techniques are a promising approach for reducing transmitter B1 inhomogeneity due to the potential for adjusting the spatial excitation profile with independent RF pulses. These techniques may be further improved with transmit sensitivity encoding (SENSE) methods because the sensitivity information in pulse design provides an excitation(More)
A new k-space direct matrix inversion (DMI) method is proposed here to accelerate non-Cartesian SENSE reconstructions. In this method a global k-space matrix equation is established on basic MRI principles, and the inverse of the global encoding matrix is found from a set of local matrix equations by taking advantage of the small extension of k-space coil(More)
This thesis describes a number of algorithms related to the acquisition, reconstruction and post-processing of Magnetic Resonance data. The basic theme underlying each of these algorithms is the use of a unified systems approach to exploit information redundancy available in MR imaging. There are three basic contributions. The first concerns the development(More)
Contrast-enhanced magnetic resonance angiography (CE-MRA) requires high spatial resolution to demonstrate detailed vasculature and high temporal resolution to capture the contrast bolus. Sparse bright voxels in MRA permit substantial undersampling in MRI data acquisition, allowing simultaneous high temporal and spatial resolution. We developed a(More)
  • 1