Learn More
Macrophages play a key role in obesity-induced inflammation. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) exert anti-inflammatory functions in both humans and animal models, but the exact cellular signals mediating the beneficial effects are not completely understood. We previously found that two(More)
In this study, we aim to determine cellular mechanisms linking nutrient metabolism to the regulation of inflammation and insulin resistance. The nutrient sensors AMP-activated protein kinase (AMPK) and SIRT1 show striking similarities in nutrient sensing and regulation of metabolic pathways. We find that the expression, activity, and signaling of the major(More)
Obesity is associated with a chronic inflammatory state characterized by adipose tissue macrophage infiltration and inflammation, which contributes to insulin resistance. The cholinergic antiinflammatory pathway, which acts through the macrophage α7-nicotinic acetylcholine receptor (α7nAChR), is important in innate immunity. Here we show that adipose tissue(More)
Deficiency in autophagy, a lysosome-dependent cell degradation pathway, has been associated with a variety of diseases especially cancer. Recently, the activation of autophagy by hepatitis B virus X (HBx) protein, which is implicated in hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC), has been identified in hepatic cells. However, the(More)
Skeletal muscle resistance to the key metabolic hormones, leptin and insulin, is an early defect in obesity. Suppressor of cytokine signaling 3 (SOCS3) is a major negative regulator of both leptin and insulin signaling, thereby implicating SOCS3 in the pathogenesis of obesity and associated metabolic abnormalities. Here, we demonstrate that SOCS3 mRNA(More)
Chronic Inflammation is a key link between obesity and insulin resistance. We previously showed that two nutrient sensors AMP-activated protein kinase (AMPK) and SIRT1 interact to regulate macrophage inflammation. AMPK is also a molecular target of 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR), which has been shown to reduce insulin resistance(More)
To study the anti-inflammation effect of Shikonin (Shik) and its mechanism, murine macrophage-like RAW264.7 cells (RAW264.7 cells) were divided into control group, LPS group (0.125, 0.25 and 0.5μg/ml), LPS (0.125, 0.25 and 0.5μg/ml) plus Shik (0.5, 1 and 2μM) group, and Shik (2μM) group. After exposure for 24h, the levels of Interleukin-6 (IL-6), nitric(More)
BACKGROUND AND AIMS Chronic hepatitis B virus (HBV) infection remains a serious global health problem, inducing a spectrum of diseases, including asymptomatic HBV carriage (ASC) and chronic hepatitis B (CHB). ASC and CHB represent different immunological states and their prognoses are diverse. To clarify molecular mechanisms underlying the two infection(More)
BACKGROUND/AIMS About 400 million individuals are chronically infected with hepatitis B virus, at high risk of developing liver cirrhosis and hepatocellular carcinoma. Recent studies have demonstrated an interaction between hepatitis B virus replication and autophagy activity of hepatocytes. In the present study, we aimed to investigate the role of miR-141(More)
APOBEC3G (A3G) is an intrinsic antiretroviral factor which can inhibit Hepatitis B virus (HBV) replication. This antiviral activity mainly depends on A3G incorporation into viral particles. However, the mechanisms of A3G packaging into HBV particles have not been well characterized. In this paper, we demonstrated that A3G interacted with the HBV core(More)