Zhengcai Liu

Learn More
BACKGROUND We demonstrated recently that treatment with suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, improved survival in a rodent model of lipopolysaccharide (LPS)-induced endotoxic shock. The precise mechanisms, however, have not been well-defined. The aim of this study was to investigate the impact of SAHA treatment on gene(More)
BACKGROUND Circulating proteins may serve as biomarkers for the early diagnosis and treatment of shock. We have recently demonstrated that treatment with suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, significantly improves survival in a rodent model of lipopolysaccharide (LPS)-induced septic shock. Preliminary proteomic data(More)
BACKGROUND Hemorrhagic shock (HS) followed by an infection ("second hit") can lead to severe systemic inflammatory response and multiple-organ failure. Studies have shown that resuscitation with hypertonic saline (HTS) can blunt the inflammatory response. We demonstrated that large doses of valproic acid (VPA, 300 mg/kg), a histone deacetylase inhibitor,(More)
The transcription factor FOXP3 is specifically expressed in regulatory T (Treg) cells and appears to mediate immune surveillance. Indeed, FOXP3(+)Treg cells have been linked to disease pathogenesis, including some cancers. This study investigated the presence of FOXP3(+)Treg cells in colorectal cancer and the relationship of FOXP3 expression with(More)
OBJECTIVE We have previously demonstrated that pretreatment and posttreatment of animals with suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, can improve survival in a mouse model of lipopolysaccharide (LPS)-induced severe shock. This study was designed to assess whether SAHA affects LPS/Toll-like receptor 4 signaling through(More)
BACKGROUND We have demonstrated previously that suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, improves survival in a lipopolysaccharide-induced lethal model of endotoxemia. The goal of this study was to investigate the impact of SAHA on survival in a more clinically relevant model of cecal ligation and puncture (CLP)-induced(More)
BACKGROUND We have demonstrated that postshock administration of suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, can significantly improve early survival in a highly lethal model of hemorrhagic shock. As the primary insult in hemorrhagic shock is cellular hypoxia, and transcription factor hypoxia-inducible factor-1α (HIF-1α)(More)
BACKGROUND The colonization of burn wounds by Pseudomonas aeruginosa can lead to septic shock, organ injuries, and high mortality rates. We hypothesized that negative pressure wound therapy (NPWT) would decrease invasion and proliferation of P. aeruginosa within the burn wound and reduce mortality. METHODS Thermal injuries were induced in anesthetized(More)
INTRODUCTION We have recently demonstrated that in a rodent model of lipopolysaccharide (LPS)-induced shock, an increase in circulating citrullinated histone H3 (Cit H3) is associated with lethality of sepsis, and treatment with suberoylanilide hydroxamic acid (SAHA), a histone deacetylase (HDAC) inhibitor (HDACI), significantly improves survival. However,(More)
BACKGROUND/AIMS Circular RNAs (circRNAs) are a special novel type of a stable, diverse and conserved noncoding RNA in mammalian cells. Particularly in cancer, circRNAs have been reported to be widely involved in the physiological/pathological process of life. However, it is unclear whether circRNAs are specifically involved in pancreatic ductal(More)