Learn More
The intrinsic properties of mammalian spinal motoneurons provide them with the capability to produce high rates of sustained firing in response to transient inputs (bistability). Even though it has been suggested that a persistent dendritic calcium current is responsible for the depolarizing drive underlying this firing property, such a current has not been(More)
Motoneurons integrate synaptic input and produce output in the form of trains of action potentials such that appropriate muscle contraction occurs. Motoneuronal calcium currents play an important role in the production of this repetitive firing. Because these currents change in the postnatal period, it is necessary to study them in animals in which the(More)
Intrinsic membrane properties are important in the regulation of motoneuronal output during such behaviours as locomotion. A conductance through L-type calcium channels has been implicated as an essential component in the transduction of motoneuronal input to output during locomotion. Given the developmental changes in calcium currents occurring postnatally(More)
An in vitro isolated whole spinal cord preparation has been developed in 'motor functionally mature' mice; that is mice of developmental maturity sufficient to weight-bear and walk. In balb/c mice this stage occurs at around postnatal day 10 (P10). Administration of strychnine elicited synchronous activity bilaterally in lumbar ventral roots. Rhythmic(More)
Ghrelin is an endogenous ligand of the growth hormone secretagogue receptor (GHS-R) with potent stimulatory effects on food intake. The aim of the present study was to investigate the effects of ghrelin on neuronal activity of hypothalamic glucose responding neurons. Single unit discharges in the lateral hypothalamic area (LHA), the ventromedial(More)
Ghrelin has been identified as the endogenous ligand of the growth hormone secretagogue receptor (GHS-R). Recent studies have shown that site-specific injection of ghrelin directly into the dorsal vagal complex (DVC) of rats is equally as sensitive in its orexigenic response to ghrelin as the arcuate nucleus of the hypothalamus (ARC). It is as yet unclear(More)
The novel satiety factor nesfatin-1 has been shown to decrease food intake and body weight in rodents after i.c.v. injection. However, no further developments regarding the true patho-physiological relevance of nesfatin-1 in obesity and type 1 diabetes mellitus (T1 DM) and type 2 diabetes mellitus (T2 DM) have been reported. A recent study by Stengel et al.(More)
Nesfatin-1 is an anorexigenic peptide involved in energy homeostasis. Recently, nesfatin-1 was reported to decrease blood glucose level and improve insulin sensitivity in high-fat diet-fed rats. However, little information is known about the influence of nesfatin-1 on lipid metabolism either in physiological or diabetic condition. This study undertook(More)
In this study, the expressions of growth hormone secretagogue receptor type 1a (GHS-R1a) in the rat dorsal root ganglion (DRG) and nodose ganglion (NG) were investigated by using immunohistochemistry and in situ hybridization. The results clearly showed the presence of GHS-R1a mRNA and GHS-R1a-positive neurons in the rat DRG and NG. GHS-R1a was also(More)
Nesfatin-1 is a recently discovered neuropeptide that has been shown to decrease food intake after lateral, third, or fourth brain ventricle, cisterna magna administration, or PVN injection in ad libitum fed rats. With regards to the understanding of nesfatin-1 brain sites of action, additional microinjection studies will be necessary to define specific(More)