Learn More
BACKGROUND Experimental and clinical studies showed that intraoperative infusion of remifentanil has been associated with postoperative hyperalgesia. Previous reports suggested that spinal N-methyl-D-aspartate (NMDA) receptors may contribute to the development and maintenance of opioid-induced hyperalgesia. In the present study, we used a rat model of(More)
BACKGROUND Microglia might play an important role in nociceptive processing and hyperalgesia by neuroinflammatory process. Mineralocorticoid receptor (MR) expressed on microglia might play a central role in the modulation of microglia activity. However the roles of microglia and MR in radicular pain were not well understood. This study sought to investigate(More)
BACKGROUND NR2B subunits (NMDA receptor 2B subunit) play an important role in generation of pain and forming central sensitization of pain. Ro 25-6981, a highly selective NR2B antagonist, gained much attention in recent years. In this study, we used a rat model of incisional pain to investigate effects of postoperative analgesia and changes of postoperative(More)
BACKGROUND The mammalian target of rapamycin (mTOR) is known to regulate cell growth, and it also participates in pain transmission as has been recently verified in inflammatory and neuropathic pain models. The targeting of mTOR represents a new strategy for the control of chronic pain. In the present study, we investigated the effect of mTOR in the(More)
BACKGROUND Spinal N-methyl D-aspartate receptors play an important role in the pathogenesis of neuropathic pain, and administration of N-methyl D-aspartate receptor antagonists can attenuate this hyperpathia. Ifenprodil is an antagonist selective for N-methyl D-aspartate receptor 2B (NR2B) subunits. Several researches have reported effective analgesia of(More)
High levels of glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) are colocalized in the substantia gelatinosa. This indicates that the pain pathways appear to be under a strong regulation of these receptors. However, their respective effects on pain behaviors and their interaction remain unclear. Here we show that the nociceptive behaviors(More)
Central Akt, neuronal nitric oxide synthase (nNOS) and N-methyl-d-aspartate receptor subunit 2B (NR2B) play key roles in the development of neuropathic pain. Here we investigate the effects of glucocorticoid receptors (GRs) on the expression and activation of spinal Akt, nNOS and NR2B after chronic compression of dorsal root ganglia (CCD). Thermal(More)
N-methyl-D-aspartate receptor subunit 2B (NR2B) and neuronal nitric oxide synthase (nNOS) play important roles in the mechanism of neuropathic pain. To elucidate how glucocorticoids affect this mechanism, we studied the effects of intrathecal (it) injection of prednisolone acetate (PA) on a nociceptive stimulus and the changes of nNOS and NR2B subunit(More)
BACKGROUND Hyperalgesia and neuroinflammation are associated with glia, which consists of macroglia and microglia. In this study, we used a selective cannabinoid receptor type 2 (CB2) agonist JWH015 to investigate remifentanil-induced postoperative hyperalgesia. METHODS Mechanical allodynia and thermal hyperalgesia after postoperative hyperalgesia and(More)
Numerous studies have demonstrated that prolonged opioid exposure can enhance pain sensitivity that presents as opioid-induced hyperalgesia (OIH). Activation of spinal α2-adrenergic receptor may play an important role in the development of OIH. Dexmedetomidine is an α2-adrenergic agonist that has been shown to synergize with opioids. The aim of this study(More)