Learn More
The retinoblastoma protein pRb is required for cell-cycle exit of embryonic mammalian hair cells but not for their early differentiation. However, its role in postnatal hair cells is unknown. To study the function of pRb in mature animals, we created a new conditional mouse model, with the Rb gene deleted primarily in the inner ear. Progeny survive up to 6(More)
In mammals, hair cell loss causes irreversible hearing and balance impairment because hair cells are terminally differentiated and do not regenerate spontaneously. By profiling gene expression in developing mouse vestibular organs, we identified the retinoblastoma protein (pRb) as a candidate regulator of cell cycle exit in hair cells. Differentiated and(More)
The cell types of the inner ear originate from the otic placode, a thickened layer of ectoderm adjacent to the developing hindbrain. The placode invaginates and forms the otic pit, which pinches off as a small vesicle called the otocyst. Presumptive cochleovestibular neurons delaminate from the anterior ventral part of the otocyst and form the(More)
LIM-homeodomain transcription factors (LIM-HDs) are essential in tissue patterning and differentiation. But their expression patterns in the inner ear are largely unknown. Here we report on a study of twelve LIM-HDs, by their tempo-spatial patterns that imply distinct yet overlapping roles, in the developing mouse inner ear. Expression of Lmx1a and Isl1(More)
Age-related hearing loss and noise-induced hearing loss are major causes of human morbidity. Here we used genetics and functional studies to show that a shared cause of these disorders may be loss of function of the ATP-gated P2X(2) receptor (ligand-gated ion channel, purinergic receptor 2) that is expressed in sensory and supporting cells of the cochlea.(More)
Hair cells of the inner ear are essential for hearing and balance. As a consequence, pathogenic variants in genes specifically expressed in hair cells often cause hereditary deafness. Hair cells are few in number and not easily isolated from the adjacent supporting cells, so the biochemistry and molecular biology of hair cells can be difficult to study. To(More)
Norrie disease is an X-linked recessive syndrome of blindness, deafness, and mental retardation. A knock-out mouse model with an Ndp gene disruption was studied. We examined the hearing phenotype, including audiological, histological, and vascular evaluations. As is seen in humans, the mice had progressive hearing loss leading to profound deafness. The(More)
Isl1 is a LIM-homeodomain transcription factor that is critical in the development and differentiation of multiple tissues. In the mouse inner ear, Isl1 is expressed in the prosensory region of otocyst, in young hair cells and supporting cells, and is no longer expressed in postnatal auditory hair cells. To evaluate how continuous Isl1 expression in(More)
The mammalian inner ear largely lacks the capacity to regenerate hair cells, the sensory cells required for hearing and balance. Recent studies in both lower vertebrates and mammals have uncovered genes and pathways important in hair cell development and have suggested ways that the sensory epithelia could be manipulated to achieve hair cell regeneration.(More)
Supplementary Figure 1 Optimization of cationic lipid-mediated delivery of Cre and comparison to delivery using (+36)GFP-Cre and plasmid transfection Supplementary Figure 2 Protein uptake by cationic lipid-mediated delivery compared with superpositively charged cationic protein delivery Supplementary Figure 3 Delivery optimization of TALE activators(More)