• Citations Per Year
Learn More
For the first time, a novel, simple and reliable method for analysis of pymetrozine residues in flue-cured tobacco leaves has been developed utilizing HPLC-UV with liquid-liquid partition cleanup. Pre-treatment with ultrasonic extraction and liquid-liquid partition procedures gave preferable baseline separation and clean chromatograms by removing(More)
We report a general approach to NiAu alloy nanoparticles (NPs) by co-reduction of Ni(acac)2 (acac = acetylacetonate) and HAuCl4·3H2O at 220 °C in the presence of oleylamine and oleic acid. Subject to potential cycling between 0.6 and 1.0 V (vs reversible hydrogen electrode) in 0.5 M H2SO4, the NiAu NPs are transformed into core/shell NiAu/Au NPs that show(More)
Monodisperse 5 nm AuMn nanoparticles were synthesized by hydride reduction of manganese acetylacetonate in the presence of Au nanoparticles. The alloy was formed through fast Mn diffusion into the Au structure. The AuMn nanoparticles were converted to Au-MnO composite particles through air annealing at 170 °C. These Au-MnO particles, especially the(More)
Tin (Sn) is known to be a good catalyst for electrochemical reduction of CO2 to formate in 0.5 M KHCO3. But when a thin layer of SnO2 is coated over Cu nanoparticles, the reduction becomes Sn-thickness dependent: the thicker (1.8 nm) shell shows Sn-like activity to generate formate whereas the thinner (0.8 nm) shell is selective to the formation of CO with(More)
We report a seed-mediated growth of 2.3 nm AgPd nanoparticles (NPs) in the presence of 40 × 5 nm WO2.72 nanorods (NRs) for the synthesis of AgPd/WO2.72 composites. The strong interactions between AgPd NPs and WO2.72 NRs make the composites, especially the Ag48Pd52/WO2.72, catalytically active for dehydrogenation of formic acid (TOF = 1718 h-1 and Ea = 31(More)
The interactions between plant secondary metabolites (tannic acid, rutin, cinnamic acid and catechin) and glutathione transferase (GST) were investigated by fluorescence and UV-Vis absorption spectroscopy. Intrinsic fluorescence of GST was measured by selectively exciting their tryptophan (Trp) residues and quenching constants were determined using the(More)
Stabilizing a 3d-transition metal component M from an MPd alloy structure in an acidic environment is key to the enhancement of MPd catalysis for various reactions. Here we demonstrate a strategy to stabilize Cu in 5 nm CuPd nanoparticles (NPs) by coupling the CuPd NPs with perovskite-type WO2.72 nanorods (NRs). The CuPd NPs are prepared by controlled(More)
We synthesize a new type of hybrid Pd/WO2.72 structure with 5 nm Pd nanoparticles (NPs) anchored on 50 × 5 nm WO2.72 nanorods. The strong Pd/WO2.72 coupling results in the lattice expansion of Pd from 0.23 to 0.27 nm and the decrease of Pd surface electron density. As a result, the Pd/WO2.72 shows much enhanced catalysis toward electrochemical oxidation of(More)
Glutathione transferases (GST; EC2. 5. 1. 18) is an important detoxification enzyme which catalyze the conjugation of glutathione to a large variety of endogenous and exogenous electrophilic compounds to protect the functions of body. In the present paper, three dimensional fluorescence spectra were obtained, through which the authors could identify the(More)
We report an electrochemical method to deposit atomic scale Pt on a 5 nm Au nanoparticle (NP) surface in N2-saturated 0.5 M H2SO4. Pt is provided by the Pt wire counter electrode via one-step Pt wire oxidation, dissolution, and deposition realized by controlled electrochemical scanning. Scanning from 0.6-1.0 V (vs. RHE) for 10 000 cycles gives Au98.2Pt1.8,(More)
  • 1