Zheng Wei Yuan

Learn More
In flowering plants, tapetum degeneration is proposed to be triggered by a programmed cell death (PCD) process during late stages of pollen development; the PCD is thought to provide cellular contents supporting pollen wall formation and to allow the subsequent pollen release. However, the molecular basis regulating tapetum PCD in plants remains poorly(More)
The Arabidopsis thaliana ABORTED MICROSPORES (AMS) gene encodes a basic helix-loop-helix (bHLH) transcription factor that is required for tapetal cell development and postmeiotic microspore formation. However, the regulatory role of AMS in anther and pollen development has not been fully defined. Here, we show by microarray analysis that the expression of(More)
The basic/helix-loop-helix (bHLH) transcription factors and their homologs form a large family in plant and animal genomes. They are known to play important roles in the specification of tissue types in animals. On the other hand, few plant bHLH proteins have been studied functionally. Recent completion of whole genome sequences of model plants Arabidopsis(More)
To understand the molecular mechanism regulating meristem development in the monocot rice (Oryza sativa), we describe here the isolation and characterization of three floral organ number4 (fon4) alleles and the cloning of the FON4 gene. The fon4 mutants showed abnormal enlargement of the embryonic and vegetative shoot apical meristems (SAMs) and the(More)
As a complex wall system in flowering plants, the pollen outer wall mainly contains aliphatic sporopollenin; however, the mechanism for synthesizing these lipidic precursors during pollen development remains less well understood. Here, we report on the function of the rice tapetum-expressing TDR (Tapetum Degeneration Retardation) gene in aliphatic(More)
Poaceae, one of the largest flowering plant families in angiosperms, evolved distinct inflorescence and flower morphology diverging from eudicots and other monocots. However, the mechanism underlying the specification of flower morphology in grasses remains unclear. Here we show that floral zygomorphy along the lemma-palea axis in rice (Oryza sativa) is(More)
In higher plants, timely degradation of tapetal cells, the innermost sporophytic cells of the anther wall layer, is a prerequisite for the development of viable pollen grains. However, relatively little is known about the mechanism underlying programmed tapetal cell development and degradation. Here, we report a key regulator in monocot rice (Oryza sativa),(More)
The Arabidopsis thaliana ASYMMETRIC LEAVES1 (AS1) and AS2 genes are important for repressing class I KNOTTED1-like homeobox (KNOX) genes and specifying leaf adaxial identity in leaf development. RNA-dependent RNA polymerases (RdRPs) are critical for posttranscriptional and transcriptional gene silencing in eukaryotes; however, very little is known about(More)
Mature pollen is covered by durable cell walls, principally composed of sporopollenin, an evolutionary conserved, highly resilient, but not fully characterized, biopolymer of aliphatic and aromatic components. Here, we report that ABORTED MICROSPORES (AMS) acts as a master regulator coordinating pollen wall development and sporopollenin biosynthesis in(More)
The grass family is one of the largest families in angiosperms and has evolved a characteristic inflorescence morphology, with complex branches and specialized spikelets. The origin and development of the highly divergent inflorescence architecture in grasses have recently received much attention. Increasing evidence has revealed that numerous factors, such(More)