Zheng-Gao Dong

Learn More
We demonstrate that the trapped magnetic resonance mode can be induced in an asymmetric double-bar structure for electromagnetic waves normally incident onto the double-bar plane, which mode otherwise cannot be excited if the double bars are equal in length. By adjusting the structural geometry, the trapped magnetic resonance becomes transparent with little(More)
Articles you may be interested in Tunable symmetric and asymmetric resonances in an asymmetrical split-ring metamaterial Modulating the fundamental inductive-capacitive resonance in asymmetric double-split ring terahertz metamaterials Appl. Double bands of negative refractive index in the left-handed metamaterials with asymmetric defects Appl.
The toroidal response is numerically investigated in a multifold double-ring metamaterials at the antibonding magnetic-dipole mode (i.e., antiparallel magnetic dipoles in one double-ring fold). This intriguing toroidal resonance in metamaterials is considered as a result of the magnetoelectric effect due to the broken balance of the electric near-field(More)
Zheng-Gao Dong,1,2,* Jie Zhu,2 Xiaobo Yin,2 Jiaqi Li,1 Changgui Lu,2 and Xiang Zhang2 1Physics Department and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189, China 25130 Etcheverry Hall, Nanoscale Science and Engineering Center, University of California, Berkeley, California 94720-1740, USA (Received 6 December(More)
We demonstrate that left-handed resonance transmission from metallic metamaterial, composed of periodically arranged double rings, can be extended to visible spectrum by introducing an active medium layer as the substrate. The severe ohmic loss inside metals at optical frequencies is compensated by stimulated emission of radiation in this active system. Due(More)
An otherwise dark magnetic dipole resonance in a split-ring resonator can be excited electrically with a Fano-type profile once the symmetric environment for this resonator is broken with respect to the polarized electric-field direction of incident waves. When this asymmetrically induced narrow resonance coincides with a broad dipolar resonance at an(More)
Zheng-Gao Dong,1,* Hui Liu,2,† Tao Li,2 Zhi-Hong Zhu,2 Shu-Ming Wang,2 Jing-Xiao Cao,2 Shi-Ning Zhu,2 and X. Zhang3 1Physics Department, Southeast University, Nanjing 211189, China 2National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China 325130 Etcheverry Hall, Nanoscale Science and Engineering Center, University of(More)
Toroidal dipolar response in a metallic metastructure, composed of double flat rings, is utilized to manipulate the radiation pattern of a single dipolar emitter (e.g., florescent molecule/atom or quantum dot). Strong Fano-type radiation spectrum can be obtained when these two coupling dipoles are spatially overlapped, leading to significant radiation(More)
Due to metal losses in plasmonic metamaterials, high-refractive-index dielectrics are promising to improve optical performances of their metallic counterparts. In this paper, a LiTaO(3) microtube metamaterial is numerically investigated to explore the toroidal dipolar resonance based on the multipole expansion theory. The local field strength probed on the(More)
The protein-protein interactions between hepatitis B surface antigen (HBsAg) and its antibodies (anti-HBs) were studied by measuring the binding force between microspheres coated with such proteins using optical tweezers. The interaction force between the protein-coated microspheres was found to be strongly influenced by the acidity of the surrounding(More)