Zheng Fan

Learn More
Conserved clusters of genes encoding DsrE and TusA homologs occur in many archaeal and bacterial sulfur oxidizers. TusA has a well documented function as a sulfurtransferase in tRNA modification and molybdenum cofactor biosynthesis in Escherichia coli, and DsrE is an active site subunit of the DsrEFH complex that is essential for sulfur trafficking in the(More)
Chemical modification can inhibit ion channels either by reacting with pore-lining residues and directly occluding the channel or by closing the channel allosterically. A general method to distinguish between these two mechanisms does not exist. Previously, sulfhydryl (SH) modification has been shown to inhibit ATP-sensitive K(+) (K(ATP)) channels. The(More)
Intracellular application of certain charged methanethiosulfonate (MTS) reagents modified and irreversibly inhibited Kir6.2 channels when cysteine substitutions were introduced at positions Ile-210, Ile-211, or Ser-212 within the putative cytoplasmic region. Inhibition depends on the spatial dimensions of the MTS reagents. Reaction of MTS reagents, having(More)
Comamonas testosteroni CNB-1 behaves chemotactically toward a wide range of organic compounds, and 19 methyl-accepting chemotaxis proteins (MCPs) were annotated from the genome of strain CNB-2, a plasmid-curing derivative from strain CNB-1. The MCP-free mutant CNB-1Δ20 completely lost its chemotactic responses. In this study, we found that a chemoreceptor,(More)
  • 1