Learn More
The ATP-sensitive potassium channel (KATP) controls insulin release in pancreatic beta-cells and also modulates important functions in other cell types. In this study we report that anionic phospholipids activated KATP in pancreatic beta-cells, cardiac myocytes, skeletal muscle cells, and a cloned KATP composed of two subunits (SUR/Kir6. 2) stably expressed(More)
Anionic phospholipids modulate the activity of inwardly rectifying potassium channels (Fan, Z., and J.C. Makielski. 1997. J. Biol. Chem. 272:5388-5395). The effect of phosphoinositides on adenosine triphosphate (ATP) inhibition of ATP-sensitive potassium channel (K(ATP)) currents was investigated using the inside-out patch clamp technique in cardiac(More)
We have established stably transfected HEK 293 cell lines expressing high levels of functional human ether-a go-go-related gene (HERG) channels. We used these cells to study biochemical characteristics of HERG protein, and to study electrophysiological and pharmacological properties of HERG channel current at 35 degrees C. HERG-transfected cells expressed(More)
An avian-origin human-infecting influenza (H7N9) virus was recently identified in China. We have evaluated the viral hemagglutinin (HA) receptor-binding properties of two human H7N9 isolates, A/Shanghai/1/2013 (SH-H7N9) (containing the avian-signature residue Gln(226)) and A/Anhui/1/2013 (AH-H7N9) (containing the mammalian-signature residue Leu(226)). We(More)
Large conductance, calcium- and voltage-gated potassium (BK) channels are ubiquitous and critical for neuronal function, immunity, and smooth muscle contractility. BK channels are thought to be regulated by phosphatidylinositol 4,5-bisphosphate (PIP(2)) only through phospholipase C (PLC)-generated PIP(2) metabolites that target Ca(2+) stores and protein(More)
Na+ current (INa) through wild-type human heart Na+ channels (hH1) is important for normal cardiac excitability and conduction, and it participates in the control of repolarization and refractoriness. INa kinetics depend strongly on temperature, but INa for hH1 has been studied previously only at room temperature. We characterized early INa (the peak and(More)
BACKGROUND Increased susceptibility to dilated cardiomyopathy has been observed in patients carrying mutations in the SCN5A gene, but the underlying mechanism remains unclear. In this study, we identified and characterized, both in vitro and clinically, an SCN5A mutation associated with familial progressive atrioventricular block of adult onset and dilated(More)
1. The patch-clamp method was used to study the effects of pinacidil on the adenosine 5'-triphosphate (ATP)-sensitive K+ channel current in guinea-pig ventricular myocytes. 2. In the inside-out configuration of the patch membranes, the channel activity revealed a nearly fully open state in the absence of ATP, whereas application of ATP (0.1-5 mM) markedly(More)
Mutations in the dystrophin gene cause Duchenne and Becker muscular dystrophy in humans and syndromes in mice, dogs, and cats. Affected humans and dogs have progressive disease that leads primarily to muscle atrophy. Mdx mice progress through an initial phase of muscle hypertrophy followed by atrophy. Cats have persistent muscle hypertrophy. Hypertrophy in(More)
The patch-clamp technique was used to study the relation between pinacidil and intracellular ATP concentration [( ATP]i) on the activation of the outward K+ current in guinea pig ventricular myocytes. Pinacidil shortened the action potential duration, exhibiting stronger effect at 2 mM [ATP]i than at 5 mM [ATP]i. Pinacidil at 5 microM or higher(More)