Learn More
A crystal structure is reported for the C168S mutant of a typical 2-Cys peroxiredoxin III (Prx III) from bovine mitochondria at a resolution of 3.3 A. Prx III is present as a two-ring catenane comprising two interlocking dodecameric toroids that are assembled from basic dimeric units. Each ring has an external diameter of 150 A and encompasses a central(More)
The mitochondrial 2-Cys peroxiredoxin PrxIII serves as a thioredoxin-dependent peroxidase operating in tandem with its cognate partners, an organelle-specific thioredoxin (Trx2) and NADP-linked thioredoxin reductase (TRR2). This PrxIII pathway is emerging as a primary regulator of intracellular H(2)O(2) levels with dual roles in antioxidant defence and(More)
Peroxiredoxin IV (PrxIV) is an endoplasmic reticulum-localized enzyme that metabolizes the hydrogen peroxide produced by endoplasmic reticulum oxidase 1 (Ero1). It has been shown to play a role in de novo disulfide formation, oxidizing members of the protein disulfide isomerase family of enzymes, and is a member of the typical 2-Cys peroxiredoxin family. We(More)
Mitochondria are the major intracellular sites of oxygen consumption producing reactive oxygen species (ROS) as toxic by-products of oxidative phosphorylation, primarily via electron leakage from the respiratory chain. The resultant types of chemical damage to lipids, DNA and proteins are described as well as the broader implications for the involvement of(More)
Hydrogen peroxide (H2O2) can act as a signalling molecule affecting the cell cycle as well as contributing towards the oxidative stress response. The primary target of this molecule is oxidation-sensitive cysteine residues in proteins such as protein tyrosine phosphatases. The cell has robust mechanisms to remove H2O2 that need to be regulated for H2O2 to(More)
Typical 2-Cys peroxiredoxins are required to remove hydrogen peroxide from several different cellular compartments. Their activity can be regulated by hyperoxidation and consequent inactivation of the active-site peroxidatic cysteine. Here we developed a simple assay to quantify the hyperoxidation of peroxiredoxins. Hyperoxidation of peroxiredoxins can only(More)
Providing seamless connectivity in heterogeneous wireless networks has been a challenging job for the last couple of years. Traditional Vertical Handover Management (VHM) schemes are not enough good, to support seamless connectivity in heterogeneous networks. Therefore, to deal with the challenges such as inappropriate handover triggering and network(More)
A new potential infrared (IR) nonlinear optical (NLO) material Bi(2)(IO(4))(IO(3))(3) was synthesized by hydrothermal method. Bi(2)(IO(4))(IO(3))(3) crystallizes in the chiral orthorhombic space group P2(1)2(1)2(1) (No. 19) with a = 5.6831(11) Å, b = 12.394(3) Å, and c = 16.849(3) Å. It exhibits a three-dimensional framework through a combination of the(More)
The membrane topology of vitamin K epoxide reductase (VKOR) is controversial with data supporting both a three transmembrane and a four transmembrane model. The positioning of the transmembrane domains and the loops between these domains is critical if we are to understand the mechanism of vitamin K oxidation and its recycling by members of the thioredoxin(More)