Learn More
Peroxisome proliferator-activated receptor gamma co-activator 1alpha (PGC-1alpha) promotes mitochondrial biogenesis and slow fiber formation in skeletal muscle. We hypothesized that activation of the p38 mitogen-activated protein kinase (MAPK) pathway in response to increased muscle activity stimulated Pgc-1alpha gene transcription as part of the mechanisms(More)
Interactions between dopamine and N-methyl-D-aspartate receptors (NMDARs) in prefrontal cortex (PFC) and other brain regions are believed to play an important role in normal mental function and neuropsychiatric disorders. In this study, we examined the regulation of NMDAR currents by the dopamine D1 receptor in PFC pyramidal neurons. Application of the D1(More)
Mounting evidence suggests that acute and chronic stress, especially the stress-induced release of glucocorticoids, induces changes in glutamate neurotransmission in the prefrontal cortex and the hippocampus, thereby influencing some aspects of cognitive processing. In addition, dysfunction of glutamatergic neurotransmission is increasingly considered to be(More)
  • Akiko Hayashi-Takagi, Manabu Takaki, Nick Graziane, Saurav Seshadri, Hannah Murdoch, Allan J Dunlop +13 others
  • 2010
Synaptic spines are dynamic structures that regulate neuronal responsiveness and plasticity. We examined the role of the schizophrenia risk factor DISC1 in the maintenance of spine morphology and function. We found that DISC1 anchored Kalirin-7 (Kal-7), regulating access of Kal-7 to Rac1 and controlling the duration and intensity of Rac1 activation in(More)
  • Jorge L. Ruas, James P. White, Rajesh R. Rao, Sandra Kleiner, Kevin T. Brannan, Brooke C. Harrison +11 others
  • 2012
PGC-1α is a transcriptional coactivator induced by exercise that gives muscle many of the best known adaptations to endurance-type exercise but has no effects on muscle strength or hypertrophy. We have identified a form of PGC-1α (PGC-1α4) that results from alternative promoter usage and splicing of the primary transcript. PGC-1α4 is highly expressed in(More)
Studies over the past decade have enunciated silent synapses as prominent cellular substrates for synaptic plasticity in the developing brain. However, little is known about whether silent synapses can be generated postdevelopmentally. Here, we demonstrate that highly salient in vivo experience, such as exposure to cocaine, generates silent synapses in the(More)
The prefrontal cortex (PFC), a key brain region controlling cognition and emotion, is strongly influenced by stress. While chronic stress often produces detrimental effects on these measures, acute stress has been shown to enhance learning and memory, predominantly through the action of corticosteroid stress hormones. We used a combination of(More)
Mammalian skeletal muscles are capable of regeneration after injury. Quiescent satellite cells are activated to reenter the cell cycle and to differentiate for repair, recapitulating features of myogenesis during embryonic development. To understand better the molecular mechanism involved in this process in vivo, we employed high density cDNA microarrays(More)
Chronic stress could trigger maladaptive changes associated with stress-related mental disorders; however, the underlying mechanisms remain elusive. In this study, we found that exposing juvenile male rats to repeated stress significantly impaired the temporal order recognition memory, a cognitive process controlled by the prefrontal cortex (PFC).(More)
Parkinson's disease (PD) is defined by the degeneration of nigral dopaminergic (DA) neurons and can be caused by monogenic mutations of genes such as parkin. The lack of phenotype in parkin knockout mice suggests that human nigral DA neurons have unique vulnerabilities. Here we generate induced pluripotent stem cells from normal subjects and PD patients(More)