Learn More
Alpine meadows are one major type of pastureland on the Tibetan Plateau. However, few studies have evaluated the response of soil respiration (R(s)) to grazing along an elevation gradient in an alpine meadow on the Tibetan Plateau. Here three fenced enclosures were established in an alpine meadow at three elevations (i.e., 4313 m, 4513 m, and 4693 m) in(More)
Uncertainties about the response of plant photosynthesis and growth to elevated temperature make it difficult to predict how plant production will vary under future climatic warming in alpine regions. Here, we used a meta-analysis approach to synthesize 272 observations from 27 studies on the Tibetan Plateau. Warming significantly increased aboveground(More)
Understanding the biodiversity–productivity relationship is essential for sustainable pasture management. We performed a multi-site transect survey across three alpine grassland types, meadow, steppe and desert steppe to get some initial insights into how biotic and abiotic factors drive both aboveground net primary productivity (ANPP) and species richness(More)
Although alpine meadows of Tibet are expected to be strongly affected by climatic warming, it remains unclear how soil organic C (SOC), total N (TN), ammonium N (NH4 (+)-N) , nitrate N (NO3 (+)-N), and dissolved organic C (DOC) and N (DON) respond to warming. This study aims to investigate the responses of these C and N pools to short-term experimental(More)
Over the past decades, the Tibetan Plateau has experienced pronounced warming, yet the extent to which warming will affect alpine ecosystems depends on how warming interacts with other influential global change factors, such as nitrogen (N) deposition. A long-term warming and N manipulation experiment was established to investigate the interactive effects(More)
To identify the general effects of nitrogen addition on alpine plants, we used a meta-analysis approach to synthesize 599 observations from 51 studies on the Tibetan Plateau. Nitrogen addition significantly increased plant height by 19.0 %, plant biomass by 29.7 %, graminoid aboveground biomass by 89.8 %, and sedge aboveground biomass by 75.6 % but(More)
Temperature and water conditions affect vegetation growth dynamics and associated spectral measures. We examined the response of the growing season maximum enhanced vegetation index (MEVI) to the growing season temperature, precipitation, vapor pressure and relative humidity on the Tibetan Plateau. The responses of the MEVI to climatic factors changed with(More)
The responses of ecosystem (R ec) and soil (R s) respiration to nutrient enrichment have been extensively investigated, aiding our understanding of ecosystem and soil carbon (C) balances in light of global changes. However, the effects of climatic variables and plant growth on CO2 fluxes under nutrient enrichment remain poorly known. We measured aboveground(More)
Quantifying the effects of nutrient additions on soil microbial respiration (R m) and its contribution to soil respiration (R s) are of great importance for accurate assessment ecosystem carbon (C) flux. Nitrogen (N) addition either alone (coded as LN and HN) or in combination with phosphorus (P) (coded as LN + P and HN + P) were manipulated in a semiarid(More)
  • 1