Learn More
The twin support vector machine (TWSVM) is one of the powerful classification methods. In this brief, a TWSVM-type clustering method, called twin support vector clustering (TWSVC), is proposed. Our TWSVC includes both linear and nonlinear versions. It determines k cluster center planes by solving a series of quadratic programming problems. To make TWSVC(More)
As a development of powerful SVMs, the recently proposed parametric-margin ν-support vector machine (par-ν-SVM) is good at dealing with heteroscedastic noise classification problems. In this paper, we propose a novel and fast proximal parametric-margin support vector classifier (PPSVC), based on the par-ν-SVM. In the PPSVC, we maximize a novel proximal(More)
In this paper, we propose a novel least squares twin parametric-margin support vector machine (TPMSVM) for binary classification, called LSTPMSVM for short. LSTPMSVM attempts to solve two modified primal problems of TPMSVM, instead of two dual problems usually solved. The solution of the two modified primal problems reduces to solving just two systems of(More)
In this paper, we propose an efficient weighted Lagrangian twin support vector machine (WLTSVM) for the imbalanced data classification based on using different training points for constructing the two proximal hyperplanes. The main contributions of our WLTSVM are: (1) a graph based under-sampling strategy is introduced to keep the proximity information,(More)
In this letter, we propose an improved version of generalized eigenvalue proximal support vector machine (GEPSVM), called IGEPSVM for short. The main improvements are 1) the generalized eigenvalue decomposition is replaced by the standard eigenvalue decomposition, resulting in simpler optimization problems without the possible singularity. 2) An extra(More)