Learn More
The cellular microRNA miR-155 has been shown to be involved in lymphocyte activation and is expressed in Epstein-Barr virus (EBV)-infected cells displaying type III latency gene expression but not type I latency gene expression. We show here that the elevated levels of miR-155 in type III latency cells is due to EBV gene expression and not epigenetic(More)
Anteroposterior patterning in Drosophila melanogaster is dependent on the sequence-specific RNA-binding protein Smaug, which binds to and regulates the translation of nanos (nos) mRNA. Here we demonstrate that the sterile-alpha motif (SAM) domain of Smaug functions as an RNA-recognition domain. This represents a new function for the SAM domain family, which(More)
The immense volume and rapid growth of human genomic data, especially single nucleotide polymorphisms (SNPs), present special challenges for both biomedical researchers and automatic algorithms. One such challenge is to select an optimal subset of SNPs, commonly referred as "haplotype tagging SNPs" (htSNPs), to capture most of the haplotype diversity of(More)
The Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP1) is a functional homologue of the tumor necrosis factor receptor family and contributes substantially to the oncogenic potential of EBV through activation of nuclear factor kappaB (NF-kappaB). MicroRNAs (miRNAs) are a class of small RNA molecules that are involved in the regulation of(More)
A major challenge for genomewide disease association studies is the high cost of genotyping large number of single nucleotide polymorphisms (SNP). The correlations between SNPs, however, make it possible to select a parsimonious set of informative SNPst known as "tagging" SNPs, able to capture most variation in a population. Considerable research interest(More)
MicroRNA miR-155 is expressed at elevated levels in human cancers including cancers of the lung, breast, colon, and a subset of lymphoid malignancies. In B cells, miR-155 is induced by the oncogenic latency gene expression program of the human herpesvirus Epstein-Barr virus (EBV). Two other oncogenic herpesviruses, Kaposi's sarcoma-associated herpesvirus(More)
Monocytes/macrophages are heterogeneous and versatile cells that could undergo their phenotypically/functionally dynamic switch in response to the microenvironment signals. Two major macrophage subpopulations with different functions which represent extreme of a continuum in a universe of activation states, including classically activated/inflammatory (M1)(More)
The SAM domain of the Saccharomyces cerevisiae post-transcriptional regulator Vts1p epitomizes a subfamily of SAM domains conserved from yeast to humans that function as sequence-specific RNA-binding domains. Here we report the 2.0-A X-ray structure of the Vts1p SAM domain bound to a high-affinity RNA ligand. Specificity of RNA binding arises from the(More)
Chondrocyte phenotype has been shown to dedifferentiate during passaged monolayer cultivation. Hence, we have investigated the expression profile of 27 chondrocyte-associated genes from both osteoarthritic cartilage tissue and healthy passaged human articular chondrocytes by quantitative real-time PCR. Our results indicate that the gene expression levels of(More)
Species independence of brain tissue binding was assessed with a large number of structurally diverse compounds using equilibrium dialysis with brain homogenates of seven species and strains (Wistar Han rat, Sprague-Dawley rat, CD-1 mouse, Hartley guinea pig, beagle dog, cynomolgus monkey, and human). The results showed that the fractions unbound of the(More)