Learn More
The electronic structure of organic-inorganic interfaces often features resonances originating from discrete molecular orbitals coupled to continuum lead states. An example is molecular junction, individual molecules bridging electrodes, where the shape and peak energy of such resonances dictate junction conductance, thermopower, I-V characteristics, and(More)
Molecular electronics aims to miniaturize electronic devices by using subnanometre-scale active components. A single-molecule diode, a circuit element that directs current flow, was first proposed more than 40 years ago and consisted of an asymmetric molecule comprising a donor-bridge-acceptor architecture to mimic a semiconductor p-n junction. Several(More)
Transport through an Anderson junction (two macroscopic electrodes coupled to an Anderson impurity) is dominated by a Kondo peak in the spectral function at zero temperature. We show that the single-particle Kohn-Sham potential of density-functional theory reproduces the linear transport, despite the lack of a Kondo peak in its spectral function. Using(More)
A key quantity for molecule-metal interfaces is the energy level alignment of molecular electronic states with the metallic Fermi level. We develop and apply an efficient theoretical method, based on density functional theory (DFT) that can yield quantitatively accurate energy level alignment information for physisorbed metal-molecule interfaces. The method(More)
Using scanning tunneling microscope break-junction experiments and a new first-principles approach to conductance calculations, we report and explain low-bias charge transport behavior of four types of metal-porphyrin-gold molecular junctions. A nonequilibrium Green's function approach based on self-energy corrected density functional theory and optimally(More)
Molecular junctions formed using the scanning-tunneling-microscope-based break-junction technique (STM-BJ) have provided unique insight into charge transport at the nanoscale. In most prior work, the same metal, typically Au, Pt, or Ag, is used for both tip and substrate. For such noble metal electrodes, the density of electronic states is approximately(More)
Charge transport phenomena in single-molecule junctions are often dominated by tunneling, with a transmission function dictating the probability that electrons or holes tunnel through the junction. Here, we present a new and simple technique for measuring the transmission functions of molecular junctions in the coherent tunneling limit, over an energy range(More)
Modern density functional theory (DFT) calculations employ the Kohn-Sham system of noninteracting electrons as a reference, with all complications buried in the exchange-correlation energy (E(XC)). The adiabatic connection formula gives an exact expression for E(XC). We consider DFT calculations that instead employ a reference of strictly correlated(More)
  • 1