Learn More
The forkhead transcription factor Foxp3 is the only definitive marker of CD4+CD25+ regulatory T cells (Tregs) and has been identified as a key regulator in the development and function of Tregs. Foxp3 expression has been reported in a variety of solid tumors, including melanoma. In this study, we validated Foxp3 expression in both tumor-infiltrating Tregs(More)
Oxidative stress caused by hydrogen peroxide (H(2)O(2)) leads to cell death and has been implicated in the pathogenesis of vitiligo. The nuclear factor E2-related factor 2 (Nrf2)-antioxidant response element (ARE), a major antioxidant pathway, regulates oxidative stress-related cytoprotective genes. We hypothesized that the Nrf2-ARE pathway protects human(More)
Recent evidence indicates that oxidative stress and genetic factors play an important role in the pathogenesis of vitiligo. SNPs in miRNAs involved in oxidative stress could potentially influence the development of vitiligo. In this case-control study, we investigated the association of a functional SNP of rs11614913 in miR-196a-2 with risk of vitiligo. A(More)
Vitiligo melanocytes possess higher susceptibility to oxidative insults. Consistent with this, impairment of the antioxidant defense system has been reported to be involved in the onset and progression of vitiligo. Our previous study showed that the nuclear factor E2-related factor 2-antioxidant response element (Nrf2-ARE) pathway and its downstream(More)
The removal of H(2)O(2) by antioxidants has been proven to be beneficial to patients with vitiligo. Baicalein (5,6,7-trihydroxyflavone; BE) has antioxidant activity and has been used in vitiligo therapy in Chinese traditional medicine. In this study, we investigated the potential protective effect and mechanisms of BE against H(2)O(2)-induced apoptosis in(More)
Vitiligo is an acquired depigmentation disorder, and reactive oxygen species play an important role in melanocyte damage. Base excision repair is the major pathway responsible for removing reactive oxygen species-induced DNA damage, in which APE1, ADPRT, and XRCC1 play key roles. To investigate the association between genetic variations of these genes and(More)
Cancer stem cells (CSCs) are found in many cancer types, including squamous cell carcinoma (SCC). CSCs initiate cancer formation and are linked to metastasis and resistance to therapies. Studies have revealed that several distinct CSC populations coexist in SCC and that tumor initiation and metastatic potential of these populations can be uncoupled.(More)
BACKGROUND Vitiligo is a chronic depigmented skin disorder with regional melanocytes depletion. The pathogenesis was not completely clarified. Recently, more and more evidence suggested that polymorphisms of some genes are associated with vitiligo risk. Here, we want to examine the association between the inducible nitric oxide synthase (iNOS) gene(More)
Vitiligo is an acquired depigmentation disorder largely caused by defective melanocyte- or autoimmunity-induced melanocyte destruction. The aryl hydrocarbon receptor (AHR) is essential for melanocyte homeostasis and immune process, and abnormal AHR was observed in vitiligo. We previously identified the T allele of AHR -129C > T variant as a protective(More)
The nuclear factor erythroid-derived two-like 2-antioxidant response element (Nrf2-ARE) pathway and its downstream antioxidant enzyme heme oxygenase-1 (HMOX1 or HO-1) play essential roles in H2 O2 -induced oxidative damage in human melanocytes. However, the link between Nrf2 promoter polymorphisms and susceptibility to oxidative stress-related diseases such(More)