Zhaonian Zou

Learn More
Frequent subgraph mining has been extensively studied on certain graph data. However, uncertainties are inherently accompanied with graph data in practice, and there is very few work on mining uncertain graph data. This paper investigates frequent subgraph mining on uncertain graphs under probabilistic semantics. Specifically, a measure called(More)
In recent years, large amount of data modeled by graphs, namely graph data, have been collected in various domains. Efficiently processing queries on graph databases has attracted a lot of research attentions. <i>Supergraph query</i> is a kind of new and important queries in practice. A <i>supergraph query, q</i>, on a graph database <i>D</i> is to retrieve(More)
In many real applications, graph data is subject to uncertainties due to incompleteness and imprecision of data. Mining such uncertain graph data is semantically different from and computationally more challenging than mining conventional exact graph data. This paper investigates the problem of mining uncertain graph data and especially focuses on mining(More)
Graph data are subject to uncertainties in many applications due to incompleteness and imprecision of data. Mining uncertain graph data is semantically different from and computationally more challenging than mining exact graph data. This paper investigates the problem of mining frequent subgraph patterns from uncertain graph data. The frequent subgraph(More)
Existing studies on graph mining focus on exact graphs that are precise and complete. However, graph data tends to be uncertain in practice due to noise, incompleteness and inaccuracy. This paper investigates the problem of finding top-k maximal cliques in an uncertain graph. A new model of uncertain graphs is presented, and an intuitive measure is(More)
Frequent subgraph mining has been extensively studied on certain graph data. However, uncertainty is intrinsic in graph data in practice, but there is very few work on mining uncertain graph data. This paper focuses on mining frequent subgraphs over uncertain graph data under the probabilistic semantics. Specifically, a measure called $${\varphi}$$(More)
The k-truss of a graph is the largest edge-induced subgraph such that every edge is contained in at least k triangles within the subgraph, where a triangle is a cycle consisting of three vertices. As a new notion of cohesive subgraphs, truss has recently attracted a lot of research attentions in the database and data mining fields. At the same time,(More)
Structural-context similarities between vertices in graphs, such as the Jaccard similarity, the Dice similarity, and the cosine similarity, play important roles in a number of graph data analysis techniques. However, uncertainty is inherent in massive graph data, and therefore the classical definitions of structural-context similarities on exact graphs(More)