Zhaojun Xie

  • Citations Per Year
Learn More
Rechargeable Li-CO2 batteries offer great promise by combining carbon capture and energy technology. However, the discharge product Li2CO3 is difficult to decompose upon recharging. In this work, carbon nanotubes (CNTs) with high electrical conductivity and porous three-dimensional networks were firstly explored as air cathodes for rechargeable Li-CO2(More)
The utilization of the greenhouse gas CO2 in energy-storage systems is highly desirable. It is now shown that the introduction of graphene as a cathode material significantly improves the performance of Li-CO2 batteries. Such batteries display a superior discharge capacity and enhanced cycle stability. Therefore, graphene can act as an efficient cathode in(More)
Rechargeable nonaqueous metal-air batteries attract much attention for their high theoretical energy density, especially in the last decade. However, most reported metal-air batteries are actually operated in a pure O2 atmosphere, while CO2 and moisture in ambient air can significantly impact the electrochemical performance of metal-O2 batteries. In the(More)
  • 1