Learn More
  • Matthew P. R. Berry, Christine M. Graham, Finlay W. McNab, Zhaohui Xu, Susannah A.A. Bloch, Tolu Oni +15 others
  • 2010
Tuberculosis (TB), caused by infection with Mycobacterium tuberculosis, is a major cause of morbidity and mortality worldwide. Efforts to control it are hampered by difficulties with diagnosis, prevention and treatment. Most people infected with M. tuberculosis remain asymptomatic, termed latent TB, with a 10% lifetime risk of developing active TB disease.(More)
To optimize the in vivo folding of proteins, we linked protein stability to antibiotic resistance, thereby forcing bacteria to effectively fold and stabilize proteins. When we challenged Escherichia coli to stabilize a very unstable periplasmic protein, it massively overproduced a periplasmic protein called Spy, which increases the steady-state levels of a(More)
  • Chloe I. Bloom, Christine M. Graham, Matthew P. R. Berry, Fotini Rozakeas, Paul S. Redford, Yuanyuan Wang +22 others
  • 2013
RATIONALE New approaches to define factors underlying the immunopathogenesis of pulmonary diseases including sarcoidosis and tuberculosis are needed to develop new treatments and biomarkers. Comparing the blood transcriptional response of tuberculosis to other similar pulmonary diseases will advance knowledge of disease pathways and help distinguish(More)
The exocyst complex tethers vesicles at sites of fusion through interactions with small GTPases. The G protein RalA resides on Glut4 vesicles, and binds to the exocyst after activation by insulin, but must then disengage to ensure continuous exocytosis. Here we report that, after recognition of the exocyst by activated RalA, disengagement occurs through(More)
The exocyst is a eukaryotic tethering complex necessary for the fusion of exocytic vesicles with the plasma membrane. Its function in vivo is tightly regulated by interactions with multiple small GTPases. Exo70, one of the eight subunits of the exocyst, is important for the localization of the exocyst to the plasma membrane. It interacts with TC10 and Rho3(More)
BACKGROUND Thermotoga spp. are attractive candidates for producing biohydrogen, green chemicals, and thermostable enzymes. They may also serve as model systems for understanding life sustainability under hyperthermophilic conditions. A lack of genetic tools has hampered the investigation and application of these organisms. This study aims to develop a(More)
  • Bertrand Boisson, Emmanuel Laplantine, Carolina Prando, Silvia Giliani, Elisabeth Israelsson, Zhaohui Xu +27 others
  • 2012
We report the clinical description and molecular dissection of a new fatal human inherited disorder characterized by chronic autoinflammation, invasive bacterial infections and muscular amylopectinosis. Patients from two kindreds carried biallelic loss-of-expression and loss-of-function mutations in HOIL1 (RBCK1), a component of the linear ubiquitination(More)
  • Chloe I. Bloom, Christine M. Graham, Matthew P. R. Berry, Katalin A. Wilkinson, Tolu Oni, Fotini Rozakeas +8 others
  • 2012
RATIONALE Globally there are approximately 9 million new active tuberculosis cases and 1.4 million deaths annually. Effective antituberculosis treatment monitoring is difficult as there are no existing biomarkers of poor adherence or inadequate treatment earlier than 2 months after treatment initiation. Inadequate treatment leads to worsening disease,(More)
Facioscapulohumeral muscular dystrophy (FSHD) is caused by contractions of D4Z4 repeats at 4q35.2 thought to induce misregulation of nearby genes, one of which, DUX4, is actually localized within each repeat. A conserved ORF (mDUX), embedded within D4Z4-like repeats, encoding a double-homeodomain protein, was recently identified on mouse chromosome 10. We(More)