Learn More
—Compressive sensing is a topic that has recently gained much attention in the applied mathematics and signal processing communities. It has been applied in various areas, such as imaging, radar, speech recognition, and data acquisition. In communications, compressive sensing is largely accepted for sparse channel estimation and its variants. In this paper(More)
BACKGROUND Intraflagellar transport (IFT) is a motility process operating between the ciliary/flagellar (interchangeable terms) membrane and the microtubular axoneme of motile and sensory cilia. Multipolypeptide IFT particles, composed of complexes A and B, carry flagellar precursors to their assembly site at the flagellar tip (anterograde) powered by(More)
BACKGROUND Intraflagellar transport (IFT) is the bidirectional movement of IFT particles between the cell body and the distal tip of a flagellum. Organized into complexes A and B, IFT particles are composed of at least 18 proteins. The function of IFT proteins in flagellar assembly has been extensively investigated. However, much less is known about the(More)
Agriculture faces great challenges to ensure global food security by increasing yields while reducing environmental costs. Here we address this challenge by conducting a total of 153 site-year field experiments covering the main agro-ecological areas for rice, wheat and maize production in China. A set of integrated soil-crop system management practices(More)
Time synchronization plays a critical role in distributed network systems. In this paper, we investigate the time synchronization problem in the context of underwater sensor networks (UWSNs). Although many time-synchronization protocols have been proposed for terrestrial wireless sensor networks, none of them can be directly applied to UWSNs. This is(More)
Mashups have become the driving force behind the development of Personal Learning Environments (PLE). Creating mashups in an ad hoc manner is, however, for end users with little or no programming background not an easy task. In this paper, we leverage the possibility to use Semantic Mashups (SMashups) for a scalable approach to creating mashups. We present(More)
Frequent mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) and the promoter of telomerase reverse transcriptase (TERT) represent two significant discoveries in glioma genomics. Understanding the degree to which these two mutations co-occur or occur exclusively of one another in glioma subtypes presents a unique opportunity to guide glioma(More)
Electric field mapping is commonly used to identify irregular conduction pathways in the heart (e.g., arrhythmia) and brain (e.g., epilepsy). Ultrasound current source density imaging (UCSDI), based on the acoustoelectric (AE) effect, is a promising new technique for mapping electrical current in four dimensions with enhanced resolution. The frequency and(More)
Gliomas arising in the brainstem and thalamus are devastating tumors that are difficult to surgically resect. To determine the genetic and epigenetic landscape of these tumors, we performed exomic sequencing of 14 brainstem gliomas (BSGs) and 12 thalamic gliomas. We also performed targeted mutational analysis of an additional 24 such tumors and genome-wide(More)