Learn More
Cardiovascular-related mortality peaks during cold winter months, particularly in older adults. Acute physiological responses, such as increases in blood pressure, in response to cold exposure may contribute to these associations. To determine whether the blood pressure-raising effect (pressor response) of non-internal body temperature-reducing cold stress(More)
Supplementary oxygen is commonly administered in current medical practice. Recently it has been suggested that hyperoxia causes acute oxidative stress and produces prompt and substantial changes in coronary resistance in patients with ischemic heart disease. In this report, we examined whether the effects of hyperoxia on coronary blood velocity (CBV) would(More)
BACKGROUND During exercise, the sympathetic nervous system is activated and blood pressure and heart rate increase. In heart failure (HF), the muscle metaboreceptor contribution to sympathetic outflow is attenuated and the mechanoreceptor contribution is accentuated. Previous studies suggest that (1) capsaicin stimulates muscle metabosensitive vanilloid(More)
To determine whether skin surface cooling increases left ventricular preload and contractility to a greater extent in older compared with young adults we studied 11 young (28 +/- 2 yr; means +/- SE) and 11 older (64 +/- 3 yr) adults during normothermia (35 degrees C water perfused through a tube-lined suit) and cooling (15 degrees C water perfused for 20(More)
Obesity is a disease of oxidative stress (OS). Acute hyperoxia (breathing 100 % O2) can evoke coronary vasoconstriction by the oxidative quenching of nitric oxide (NO). To examine if weight loss would alter the hyperoxia-related coronary constriction seen in obese adolescents, we measured the coronary blood flow velocity (CBV) response to hyperoxia using(More)
The purpose of this echocardiography study was to measure peak coronary blood flow velocity (CBV(peak)) and left ventricular function (via tissue Doppler imaging) during separate and combined bouts of cold air inhalation (-14 ± 3°C) and isometric handgrip (30% maximum voluntary contraction). Thirteen young adults and thirteen older adults volunteered to(More)
Cardiovascular-related mortality increases in the cold winter months, particularly in older adults. Previously, we reported that determinants of myocardial O(2) demand, such as the rate-pressure product, increase more in older adults compared with young adults during cold stress. The aim of the present study was to determine if aging influences the coronary(More)
Animal reports suggest that reflex activation of cardiac sympathetic nerves can evoke coronary vasoconstriction. Conversely, physiological stress may induce coronary vasodilation to meet an increased metabolic demand. Whether the sympathetic nervous system can modulate coronary vasomotor tone in response to stress in humans is unclear. Coronary blood(More)
The sympathetic nervous system is an important regulator of coronary blood flow. The cold pressor test (CPT) is a powerful sympathoexcitatory stressor. We tested the hypotheses that: (1) CPT-induced sympathetic activation elicits coronary vasodilatation in young adults that is impaired with advancing age and (2) combined α- and β-adrenergic blockade(More)
The effects of cold air inhalation and isometric exercise on coronary blood flow are currently unknown, despite the fact that both cold air and acute exertion trigger angina in clinical populations. In this study, we used transthoracic Doppler echocardiography to measure coronary blood flow velocity (CBV; left anterior descending coronary artery) and(More)