Learn More
A new Ensemble Empirical Mode Decomposition (EEMD) is presented. This new approach consists of sifting an ensemble of white noise-added signal (data) and treats the mean as the final true result. Finite, not infinitesimal, amplitude white noise is necessary to force the ensemble to exhaust all possible solutions in the sifting process, thus making the(More)
Instantaneous frequency (IF) is necessary for understanding the detailed mechanisms for nonlinear and nonstationary processes. Historically, IF was computed from analytic signal (AS) through the Hilbert transform. This paper offers an overview of the difficulties involved in using AS, and two new methods to overcome the difficulties for computing IF. The(More)
A multi-dimensional ensemble empirical mode decomposition (MEEMD) for multidimensional data (such as images or solid with variable density) is proposed here. The decomposition is based on the applications of ensemble empirical mode decomposition (EEMD) to slices of data in each and every dimension involved. The final reconstruction of the corresponding(More)
Determining trend and implementing detrending operations are important steps in data analysis. Yet there is no precise definition of "trend" nor any logical algorithm for extracting it. As a result, various ad hoc extrinsic methods have been used to determine trend and to facilitate a detrending operation. In this article, a simple and logical definition of(More)
[1] Data analysis has been one of the core activities in scientific research, but limited by the availability of analysis methods in the past, data analysis was often relegated to data processing. To accommodate the variety of data generated by nonlinear and nonstationary processes in nature, the analysis method would have to be adaptive. Hilbert-Huang(More)
This article addresses data-driven time-frequency (T-F) analysis of multivariate signals, which is achieved through the empirical mode decomposition (EMD) algorithm and its noise assisted and multivariate extensions, the ensemble EMD (EEMD) and multivariate EMD (MEMD). Unlike standard approaches that project data onto predefined basis functions (harmonic,(More)
A Time-Dependent Intrinsic Correlation (TDIC) method is introduced. This new approach includes both autoand cross-correlation analysis designed especially to analyze, capture and track the local correlations between nonlinear and nonstationary time series pairs. The approach is based on Empirical Mode Decomposition (EMD) to decompose the nonlinear and(More)
In this paper, we present some general considerations about data analysis from the perspective of a physical scientist and advocate the physical, instead of mathematical, analysis of data. These considerations have been accompanying our development of novel adaptive, local analysis methods, especially the empirical mode decomposition and its major(More)
Empirical Mode Decomposition (EMD) has been widely used to analyze non-stationary and nonlinear signal by decomposing data into a series of intrinsic mode functions (IMFs) and a trend function through sifting processes. For lack of a firm mathematical foundation, the implementation of EMD is still empirical and ad hoc. In this paper, we prove mathematically(More)